MHDuet:

A distributed AMR, GRMHD code with LES and neutrinos   

About

MHDuet is a computational code providing distributed adaptive mesh refinement (AMR) for studying strong-gravity, high energy astrophysics. In particular, it uses fully general-relativistic magnetohydrodynamics to evolve the magnetized matter that constitute neutron stars along with Large Eddy Simulations (LES) techniques to capture small scale features (turbulence) that develop particularly with the magnetic field. In addition, the code currently uses a leakage scheme for neutrino cooling, soon to be upgraded to an M1 closure method that provides neutrino heating and transport. The distributed AMR uses the SAMRAI infrastructure which achieves excellent scaling to tens of thousands of processes.

Publications

[12] Carlos Palenzuela, Steven Liebling, and Borja Minano. Large eddy simulations of magnetized mergers of neutron stars with neutrinos. highly compact boson stars. Phys. Rev. D, 105(6):103020, 2022. [  DOI | arXiv ]
[11] Miguel Bezares, Mateja Bošković, Steven Liebling, Carlos Palenzuela, Paolo Pani, and Enrico Barausse. Gravitational waves and kicks from the merger of unequal mass, highly compact boson stars. Phys. Rev. D, 105(6):064067, 2022. [  DOI | arXiv ]
[10] Ricard Aguilera-Miret, Daniele Viganò, and Carlos Palenzuela. Universality of the Turbulent Magnetic Field in Hypermassive Neutron Stars Produced by Binary Mergers. Astrophys. J. Lett., 926(2):L31, 2022. [  DOI | arXiv ]
[9] Miguel Bezares, Ricard Aguilera-Miret, Lotte ter Haar, Marco Crisostomi, Carlos Palenzuela, and Enrico Barausse. No Evidence of Kinetic Screening in Simulations of Merging Binary Neutron Stars beyond General Relativity. Phys. Rev. Lett., 128(9):091103, 2022. [  DOI | arXiv ]
[8] Steven L. Liebling, Carlos Palenzuela, and Luis Lehner. Effects of High Density Phase Transitions on Neutron Star Dynamics. Class. Quant. Grav., 38(11):115007, 2021. [  DOI | arXiv ]
[7] Ricard Aguilera-Miret, Daniele Viganò, Federico Carrasco, Borja Miñano, and Carlos Palenzuela. Turbulent magnetic-field amplification in the first 10 milliseconds after a binary neutron star merger: Comparing high-resolution and large-eddy simulations. Phys. Rev. D, 102(10):103006, 2020. [  DOI | arXiv ]
[6] Daniele Viganò, Ricard Aguilera-Miret, Federico Carrasco, Borja Miñano, and Carlos Palenzuela. General relativistic MHD large eddy simulations with gradient subgrid-scale model. Phys. Rev. D, 101(12):123019, 2020. [  DOI | arXiv ]
[5] Steven L. Liebling, Carlos Palenzuela, and Luis Lehner. Toward fidelity and scalability in non-vacuum mergers. Class. Quant. Grav., 37(13):135006, 2020. [  DOI | arXiv ]
[4] Federico Carrasco, Daniele Viganò, and Carlos Palenzuela. Gradient subgrid-scale model for relativistic MHD large-eddy simulations. Phys. Rev. D, 101(6):063003, 2020. [  DOI | arXiv ]
[3] Daniele Viganò, David Martínez-Gómez, José A. Pons, Carlos Palenzuela, Federico Carrasco, Borja Miñano, Antoni Arbona, Carles Bona, and Joan Massó. A Simflowny-based high-performance 3D code for the generalized induction equation. 11 2018. [  DOI | arXiv ]
[2] Miguel Bezares and Carlos Palenzuela. Gravitational Waves from Dark Boson Star binary mergers. Class. Quant. Grav., 35(23):234002, 2018. [  DOI | arXiv ]
[1] Carlos Palenzuela, Borja Miñano, Daniele Viganò, Antoni Arbona, Carles Bona-Casas, Andreu Rigo, Miguel Bezares, Carles Bona, and Joan Massó. A Simflowny-based finite-difference code for high-performance computing in numerical relativity. Class. Quant. Grav., 35(18):185007, 2018. [  DOI | arXiv ]

Download

The code is now open-source can be downloaded from the Simflowny side here. The parameters related to SAMRAI are documented here.

A few notes about compilation. Although this code is generated by Simflowny, you need not install Simflowny. Instead, you need Samrai 4 and Lorene. Installation goes something like:

  1. Install Samrai 4:
    wget https://github.com/LLNL/SAMRAI/releases/download/v-4-1-0/SAMRAI-v4.1.0.tar.gz
    tar xzvf SAMRAI-v4.1.0.tar.gz
    cd SAMRAI/
    mkdir build
    cd build
    module load intel mvapich2 hdf5 cmake
    cmake -DENABLE_PETSC=OFF -DBUILD_SHARED_LIBS=ON -D CMAKE_C_COMPILER=icc -D CMAKE_CXX_COMPILER=icpc ..
    make
    cd include/SAMRAI
    ln -s ../SAMRAI/source/SAMRAI/hier
    ln -s ../SAMRAI/source/SAMRAI/tbox
    ln -s ../SAMRAI/source/SAMRAI/geom
    ln -s ../SAMRAI/source/SAMRAI/pdat
    ln -s ../SAMRAI/source/SAMRAI/xfer
    ln -s ../SAMRAI/source/SAMRAI/algs
    ln -s ../SAMRAI/source/SAMRAI/mesh
    ln -s ../SAMRAI/source/SAMRAI/appu
    
  2. Install Lorene:
    apt-get install cvs gsl-bin libgsl2 libgsl-dev
    cvs -d :pserver:anonymous@octane.obspm.fr:/cvsroot login
    cvs -d :pserver:anonymous@octane.obspm.fr:/cvsroot checkout Lorene
    cd Lorene
    setenv HOME_LORENE $PWD
    vi local_settings
    make
  3. Compile MHDuet:
    vi Makefile
    make

Presentations

  1. Carlos Palenzuela, Magnetic field amplification in binary neutron star mergers October 8, 2021 IPAM@UCLA
  2. Carlos Palenzuela, Magnetic Field Amplification and Topology, July 15,2021 TCAN Meeting