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I. INTRODUCTION

Here we explain the problems we want to address
within this code and compare with similar ones in the
market.

II. EVOLUTION EQUATIONS

Our previous studies on neutron stars used a magne-
tized perfect fluid with an hybrid (i.e., a combination of a
polytropic and an ideal gas) equation of state. In this pa-
per we detail the recent changes to our code to use finite
temperature equations of state and the leakage scheme.
However, we also briefly present the Einstein and fluid
equations for the sake of completeness and to define our
notation.
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From a physical point of view, we follow the dynamics
of gravitational and magnetohydrodynamical fields, plus
the contribution of neutrinos. The MHD equations must
be modified to account for the effect of neutrinos in both
energy and lepton numbers. Since the leakage scheme is
essentially a local calculation (the exception being the op-
tical depth) providing lepton and energy rates of change
as measured by a co-moving observer, its extension to
the general relativistic case is straightforward. For the
sake of completeness we describe next the basic strategy.

The covariant system of equations is

Gab = 8π(Tab +Rab) (1)

∇aT
a
b = Gb (2)

∇a(Tabn
b) = 0 (3)

∇a(Yeρu
a) = ρRY (4)

∇a
∗F ab = 0. (5)

where the first is Einstein equation coupling the matter
and the spacetime and the others state the conservation
laws for the stress-energy tensor, matter and lepton num-
ber respectively where Ye ≡ ne/nb is the electron frac-
tion, the ratio of electrons to baryons. In the absence
of lepton source terms, Eq. (42) follows closely the con-
servation law for the rest mass density, i.e. Ye is a mass
scalar. The sources Ga (≡ −∇cRc

a) and RY are the ra-
diation four-force density and lepton sources, which are
determined here via the leakage scheme.

A. Spacetime

Here we write down again the CCZ4 formalism, the
gauge conditions (with the damping parameters values).

1. Einstein equations

The Einstein equations in the presence of both matter
and radiation are

Gab = 8π(Tab +Rab) (6)

where Tab is the stress energy tensor of a perfect fluid,
Rab is the contribution from the radiation field, and we
have adopted geometrized units where G = c =M⊙ = 1.
Eq. 6, coupled with appropriate prescriptions for the dy-
namics of Tab and Rab, defines the system of equations.
In what follows we briefly describe how each is imple-
mented.
We solve the Einstein equations by adopting a 3+1

decomposition in terms of a spacelike foliation. The hy-
persurfaces that constitute this foliation are labeled by a
time coordinate t with unit normal na and endowed with
spatial coordinates xi. We express the spacetime metric
as

ds2 = −α2 dt2 + γij
(
dxi + βi dt

) (
dxj + βj dt

)
, (7)

where α is the lapse function, βi the shift vector, γij
the induced 3-metric on each spatial slice, and

√
γ is the

square root of its determinant.
In this work, we use the covariant conformal Z4 formu-

lation of the evolution equations [1, 2]. A summary of the
final set of evolution equations for the spacetime fields,
together with the gauge conditions setting the choice of
coordinates, can be found in [3].

2. CCZ4 formalism

In this section we are going to study the particular
case where p = −1 and the fields can be rewritten so
that the evolution can be reduced exactly to our BSSN
implementation when Za = 0. Let us start first from the
general equations, with p = −1 and ψ = χ, so that:

γij =
1

χ
γ̃ij , γ

ij = χγ̃ij , χ = γ−1/3 → γ̃ = 1 (8)

Ãij = χ [Kij − γijtrK/3] → trÃ = 0 (9)

Γ̂i = Γ̃i +
2

χ
Zi, Γ̃i = γ̃ij γ̃kl∂lγ̃jk → Zi =

χ

2
(Γ̂i − Γ̃i)(10)

K̂ ≡ K − 2Θ (11)

The evolution equations in terms of this new fields
reads
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∂tγ̃ij = βk∂kγ̃ij + γ̃ik ∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k − 2α
(
Ãij −

1

3
γ̃ij Ã

)
− α

3
κcγ̃ij ln γ̃ (12)

∂tÃij = βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k − α

3
κcγ̃ijÃ (13)

+ χ
[
α
(
(3)Rij +DiZj +DjZi − 8πGSij

)
−DiDjα

]TF

+ α
(
K̂ Ãij − 2ÃikÃ

k
j

)
∂tχ = βk∂kχ+

2

3
χ
[
α(K̂ + 2Θ)− ∂kβ

k
]

(14)

∂tK̂ = βk∂kK̂ −DiD
iα+ α

[1
3

(
K̂ + 2Θ

)2
+ ÃijÃ

ij + 4πG
(
τ + S

)
+ κ1(1− κ2)Θ

]
+ 2Zi∂iα (15)

∂tΘ = βk∂kΘ+
α

2

[
(3)R+ 2DiZ

i +
2

3
K̂2 +

2

3
Θ
(
K̂ − 2Θ

)
− ÃijÃ

ij
]
− Zi∂iα

− α
[
8πGτ + κ1(2 + κ2)Θ

]
(16)

∂tΓ̂
i = βj∂jΓ̂

i − Γ̂j∂jβ
i +

2

3
Γ̂i∂jβ

j + γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k (17)

− 2Ãij∂jα+ 2α
[
Γ̃i

jkÃ
jk − 3

2χ
Ãij∂jχ− 2

3
γ̃ij∂jK̂ − 8πG γ̃ij Si

]
(18)

+ 2α
[
−γ̃ij

(1
3
∂jΘ+

Θ

α
∂jα

)
− 1

χ
Zi
(
κ1 +

2

3
(K̂ + 2Θ)

)]
(19)

where the expression [. . .]TF indicate the trace-less part
with respect to the metric γ̃ij . Besides, the Ricci terms
can be written now as

(3)Rij + 2D(iZj) =
(3)R̂ij + R̂χ

ij (20)

χR̂χ
ij =

1

2
∂i∂jχ− 1

2
Γ̃k
ij∂kχ− 1

4χ
∂iχ∂jχ+

2

χ
Zkγ̃k(i∂j)χ

+
1

2
γ̃ij

[
γ̃km

(
∂k∂mχ− 3

2χ
∂kχ∂mχ

)
− Γ̂k∂kχ

]
(21)

R̂ij = −1

2
γ̃mn∂m∂nγ̃ij + γ̃k(i∂j)Γ̂

k + Γ̂kΓ̃(ij)k

+ γ̃mn
(
Γ̃k
miΓ̃jkn + Γ̃k

mjΓ̃ikn + Γ̃k
miΓ̃knj

)
(22)

and the Laplacian of the lapse is just

DiD
iα = χγ̃ijDiDjα = χ γ̃ij∂i∂jα−χΓ̃k∂kα−

1

2
γ̃ij ∂iα∂jχ

(23)
The matter terms can be written in terms of the T ab

and the conformal metric, namely

τ = na nb T
ab = α2 T 00

Si = na

(
gbi − nb ni

)
T ab = α gbi T

0b ,

Si =
S̃i

χ
, S̃i = α γ̃ik

(
T 0k + βk T 00

)
Sij = gai gbj T

ab , Sij =
S̃ij

χ2
,

S̃ij = β̃i β̃j T
00 +

(
γ̃ik βj + γ̃jk βi

)
T 0k + γ̃ik γ̃jm T km ,

S = γij Sij =
S̃

χ
.

where the shift indexes has been lowered with the con-
formal metric β̃i ≡ γ̃ij β

j .

3. Gauge conditions

We are using 1+log slicing condition with a simplified
version of the Gamma-freezing shift condition, namely

∂tα = λ1β
i∂iα− 2α fα(α) (K̂ − K̂0) (24)

∂tβ
i = λ2β

j∂jβ
i +

3

4
fβ(α) Γ̂

i − η(βi − βi
0) (25)

where η is a parameter scaling with the total mass ≈ 2/M
and λi can be either 0 or 1. The gauge functions f(α)
depend of α and can be freely chosen, although we write
them in the code as fβ(α) = f0 + f1α and fα(α) = f2 +
f3α. The standard gauge conditions that we use have
λ1 = λ2 = f0 = f2 = 1 and f1 = f3 = K̂0 = βi

0 = 0.
The Z-damping also depend on the total mass, and we
usually set them as κ1 ≤ 1/M and κ2 = 0.

4. Boundary conditions

The main part of the boundary conditions assumes
that there is an outgoing radial wave with some speed
v0,

X = X0 +
u(r − v0t)

r
(26)

where X is any of the tensor components of the evolved
variables, X0 its value at infinity and u a spherically sym-
metric perturbation. Notice that {X0, v0} depend on the
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particular variable. The time derivative can be written
as

∂tX = −vi∂iX − v0
X −X0

r
(27)

where vi = v0x
i/r and ∂i are evaluated using centered

finite differencing where possible and one-sided finite dif-
ferencing elsewhere.

A similar boundary condition is provided by the orig-
inal Sommerfeld boundary conditions, that for a field X
can be written in general as

∂tX = βj∂jX − v0

(
si∂iX +

X

r

)
(28)

where v0 is the propagation velocity of the eigenmode and
si is the normal vector of the corresponding boundary
face. We usually take instead the radial vector si = xi/r.
Applied to the Einstein equations, these conditions imply

∂tK̂ = βk∂kK̂ −
√

2fα
α

(
sk∂kK̂ +

K̂

r

)
(29)

∂tΓ̂
i = βk∂kΓ̂

i −
√
fβ

(
sk∂kΓ̂

i +
Γ̂i

r

)
(30)

∂tΘ = βk∂kΘ− α

(
si∂iΘ+

Θ

r

)
(31)

∂tÃij = βk∂kÃij − α

(
si∂iÃij +

Ãij

r

)
(32)

Notice that, within this approach, the spacetime metric
fields {α, βi, χ, γ̃ij} are evolved at the boundaries with
the same evolution equations than in the interior.

B. Matter: magnetized fluid

Equations for the perfect magnetized fluid stress-
energy tensor. 3+1 evolution equations for the magne-
tized fluid. Theoretical details on the EoS.

Let us assume that the perfect fluid and the electro-
magnetic fields are minimally coupled, that is, that there
are no mixed terms and so the total stress-energy tensor
can be written just by addition

Tµν = T fluid
µν + T em

µν (33)

so explicitely it can be written as

Tµν = [ρ(1 + ϵ) + p]uµuν + pgµν

+ Fµ
λFνλ − 1

4
gµν F

λαFλα (34)

The rest mass density ρ is the density of the fluid mea-
sured by a comoving observer. The total energy density
of the fluid also contains contributions from the internal
degrees of freedom of the particles,

e = ρ(1 + ϵ) (35)

where the internal energy ϵ accounts, for instance, for
the thermal energy, the binding energy,... The pressure
p is described by an Equation of State as a function of
the rest mass density and the internal energy, and it is a
propertie of the type of fluid which is being considered.
Within the pressure we can construct the enthalpy h,

h = ρ(1 + ϵ) + p . (36)

It is important to stress that the set of thermodynamic
quantities {ρ, ϵ, P} are all measured in the rest frame of
the fluid element, although in general we will use an Eule-
rian perspective where the coordinates are not tied to the
flow of the fluid. Therefore, we will need the four-velocity
uµ to describe how the fluid moves with respect to the
Eulerian observers. The 4-velocity follows the usual nor-
malization relation

uµuµ = −1 . (37)

It is more useful to deal with the standard velocity vec-
tors, so the velocity uµ will be decomposed into spatial
and temporal components, namely

uµ =Wnµ +Wvµ (38)

where vµ corresponds to the familiar three-dimensional
quantities as measured by Eulerian observers (ie, vµnµ =
0). Notice that the time component is not independent
due to the normalization relation (37), so

W = −nµuµ = (1− viv
i)−1/2, ui =W (vi − βi

α
) (39)

where we can recognize now that W is the standard
Lorentz factor. The set of fluid variables U = (ρ, ϵ, p, vi)
are the primitive quantities which describe the state of a
perfect fluid.
The evolution of matter must comply with the conser-

vation of the stress-energy tensor

∇νT
µν = 0, (40)

which can be expressed as a system of conservation laws
for the energy and momentum densities. In addition to
the conservation of energy and momentum, when there
are neither creation nor destruction of particles, the fluids
has to conserve also the total number of baryons. This
law is expressed in terms of the baryon number density
ρuµ, and is written as

∇µ(ρu
µ) = 0 (41)

which is just the relativistic generalization of the conser-
vation of mass. A similar conservation law is followed
by the lepton number, with a source term allowing for
production/annihilation mechanisms

∇a(Yeρu
a) = ρRY (42)

where we remind that

Ye =
np

np + nn
(43)
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being np and nn the proton and neutron number den-
sities, respectively. The net electron number density
ne− − ne+ = np due to charge neutrality in the fluid.

Then, the primitive quantites U has to be computed
from the conservation of energy, momentum and baryonic
number. The EOS for the pressure close the system of
equations.

In order to capture properly the weak solutions of
the non-linear equations in the presence of shocks it
is important to write them in local conservation law
form. The GRMHD equations for a magnetized, non-
viscous and perfectly conducting fluid [4] provide a
set of evolution equations for the conserved variables

{√
γD,

√
γSi,

√
γU,

√
γBi

}
. These conserved fields are

functions of the rest-mass density ρ, the specific internal
energy ϵ, the velocity vector vi and the magnetic field Bi

(primitive fields), namely:

D = ρW (44)

DY = ρWYe (45)

Si = (hW 2 +B2)vi − (Bkvk)Bi (46)

τ = hW 2 − p+B2 − 1

2

[
(Bkvk)

2 +
B2

W 2

]
−D,(47)

The evolution equations for these conserved fields can
be written as

∂t(
√
γD) + ∂k[

√
γ(−βk + αvk)D] = 0 (48)

∂t(
√
γDY ) + ∂k[

√
γ(−βk + αvk)DY ] =

α

W

√
γDRY (49)

∂t(
√
γτ) + ∂k[

√
γ
(
−βkτ + α(Sk −Dvk)

)
] =

√
γ[αSijKij − Sj∂jα] (50)

∂t(
√
γSi) + ∂k[

√
γ(−βkSi + αSk

i)] =
√
γ[αΓj

ikS
k
j + Sj∂iβ

j − (τ +D)∂iα]

∂t(
√
γBi) + ∂k[

√
γ{Bi(αvk − βk)−Bk(αvi − βi) + αγkiϕ}] = √

γϕ[γik∂kα− αγjkΓi
jk]

∂t(
√
γϕ) + ∂k[

√
γ(−βkϕ+ αc2hB

k)] =
√
γ[c2hB

k∂kα− αϕ trK − ακϕ] (51)

where the fluxes are

Sij =
1

2
(viSj + vjSi) + γijp−

1

2W 2

[
2BiBj − γijB

2

]
− 1

2
(Bkvk)

[
Bivj +Bjvi − γij(B

mvm)

]
Since the fluxes depend also on the primitive fields u,
one needs to calculate them before computing the rhs
by using the definitions and the Equation of State p =
p(ρ, Ye, ϵ), as detailed in Sec. III A.

Notice that for the Einstein equations we need to con-
struct the stress-energy tensor of a perfect fluid from
these quantities

T 00 =
1

α2
(D + τ) (52)

T 0i =
Si

α
− βiT 00 (53)

T ij = γikγjmSkm − Si β
j

α
− βiT oj (54)

Let us define the densitized conserved quantities as

D̄ =
√
γD , DY e =

√
γDYe , S̄i =

√
γSi , (55)

τ̄ =
√
γτ , B̄i =

√
γBi , ϕ̄ =

√
γϕ (56)

The evolution equations, in terms of the BSSN quantities
and the densitized conserved fields, can be written as
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∂tD̄ + ∂k[(−βk + αvk)D̄] = 0

∂tDY e + ∂k[(−βk + αvk)DY e] =
α

W
D̄RY (57)

∂tτ̄ + ∂k[−βk τ̄ + α(S̄k − D̄vk)] =
α

χ
S̄ijÃij +

α

3
trS̄ trK − S̄j∂jα

∂tS̄i + ∂k[−βkS̄i + αS̄k
i ] =

α

2χ

(
S̄jk∂iγ̃jk − trS̄∂iχ

)
+ S̄j∂iβ

j − (τ̄ + D̄)∂iα

∂tB̄
i + ∂k[B̄

i(αvk − βk)− B̄k(αvi − βi) + αχγ̃kiϕ̄] = ϕ̄[−αχΓ̃i + γ̃ki(−α
2
∂kχ+ χ∂kα)]

∂tϕ̄ + ∂k[−βkϕ̄+ α c2hB̄
k] = −α ϕ̄ trK + c2hB̄

k(∂kα)− ακϕ̄

where trS̄ = γjkS̄
jk = γ̃jkS̄

jk/χ.

C. Neutrino leakage

The leakage scheme provides the fluid rest frame en-
ergy sink Q and lepton sink/source RY due to neutrino
processes. RY is the source term for a scalar quantity and
therefore is the same in all frames. We express the source
term for the energy and momentum in an arbitrary frame
as

Ga = Qua . (58)

Since the effect of neutrino pressure is small [5] and
difficult to accurately capture with a neutrino leakage
scheme, we ignore its contribution in the fluid rest frame.
Now, defining H ≡ naGa = −QW and Hb ≡ hbcGc =
QWvb, the modified relativistic MHD equations become

∂t(
√
γDY ) + ... = α

√
γρRY (59)

∂t(
√
γτ) + ... = ...+ α

√
γQW (60)

∂t(
√
γSi) + ... = ...+ α

√
γQWvb (61)

Neutrino interaction rates depend sensitively on the
matter temperature and composition. Therefore, in order
to model the effect of neutrinos with reasonable accuracy,
we require an equation of state beyond that of a polytrope
or an ideal gas. We use publicly available EoS tables from
www.stellarcollapse.org and described in O’Connor and
Ott (2010) [6]. We have rewritten some of the library
routines for searching the table to make them faster and
more robust. In this paper we use the Shen-Horowitz-
Teige (SHT) [7] EoS with the NL3 relativistic mean-field
parametrization, the Lattimer-Swesty (LS) [8] EoS with
K = 220 MeV, and the H. Shen (HS) [9] for the single
neutron star simulations, and the HS EoS for the neutron
star binary.

The leakage scheme seeks to account for (i) the changes
to the (electron) lepton number and (ii) the loss of
energy from the emission of neutrinos. As discussed,
since the dynamical timescale for the post-merger of bi-
nary neutron star systems is relatively short, radiation
momentum transport and diffusion effects are expected
to be subleading. Our scheme is based on the open-
source neutrino leakage scheme from [6] and available

at www.stellarcollapse.org. At low optical depths, the
leakage scheme relies on calculating the emission rate of
energy (Qfree) and lepton number (Rfree) directly from
the rates of relevant processes. We consider three species
of neutrinos, represented here by: νe for electron neutri-
nos, ν̄e for electron antineutrinos, and νx for both tau
and muon neutrinos and their respective antineutrinos.
As discussed in [10, 11], the dominant processes are those
that

� produce electron flavour neutrinos and antineutri-
nos: charged-current, electron and positron capture
reactions
e+ + n→ p+ ν̄e , e− + p→ n+ νe .

� produce all flavours of neutrinos: electron-positron
pair-annihilation
e+ + e− → ν̄i + νi

and plasmon decay
γ → ν̄i + νi.

Notice that nucleon-nucleon bremsstrahlung can also be
an important source of νx neutrinos, dominating over
electron-positron annihilation at low temperatures and
high densities. We will include such a process in future
work.
At high optical depths on the other hand, because the

equilibrium time scales are much shorter than either neu-
trino diffusion or hydrodynamic time scales, neutrinos
are assumed to be at their equilibrium abundances and
the rates of energy loss (Qdiff) and lepton loss (Rdiff) are
taken to proceed at the diffusion timescale. The equilib-
rium abundances can be trivially calculated, however the
calculation of the diffusion timescale is more involved as
it requires the knowledge of non-local optical depths. The
computation of these optical depths lies at the core of the
leakage strategy and, because we are interested in general
(non-spherically symmetric) scenarios, we describe how
to compute them from the local opacities in section III C.
(We refer the reader to [6] for full details about the cal-
culation of the local opacity and diffusion time scale.)
The emission rates are then interpolated between the be-
havior at low and high optical depths in order to achieve
an efficient way to incorporate neutrino effects that is
correct in both regimes and applicable in between. In
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our implementation, we interpolate the energy and lep-
ton number emission rates between these two regimes via
the following formula

Xeff =
XdiffXfree

Xdiff +Xfree
, (62)

where X is either Q or R.

D. Neutrinos: truncated moments (M1)

A radiation transport scheme needs to evolve the dis-
tribution function f(ν)(x

a, pa) of neutrinos or photons,

where xa = (t, xi) are the spacetime coordinates and
pa = dxa/dλ are the components of the 4-momentum
of the neutrinos/photons, with λ some affine parameter.
Here we neglect neutrino masses, and the 4-momentum
is thus a null vector, i.e papa = 0. The distribution func-
tion of photons and of each species of neutrinos evolves
according to Boltzmann’s equation

pa
[
∂f(ν)

∂xa
− Γb

acp
c ∂f(ν)

∂pb

]
=

[
∂f(ν)

∂τ

]
coll

(63)

where Γa
bc are the Christoffel symbols, and the right-hand

side includes all collisional processes (i.e., emissions, ab-
sorptions, scatterings). Solving Boltzmann’s equation
thus requires the evolution in time of a 6-dimensional
function, a very steep computational challenge. The
main objective of this work is to provide a relatively
cheap algorithm for general relativistic radiation trans-
port which, while approximate for the numerical resolu-
tions that we can currently afford, asymptotes to Boltz-
mann’s equation in the limit of infinite computational
resources. While our algorithm can theoretically be used
in various problems involving general relativistic photon
or neutrino transport, we implement and test it with the
problem of neutrino transport in merger simulations in
mind.

Different approximations to the Boltzmann equation
have thus been developed for numerical applications.
First, let us consider the moment formalism developed
by Thorne, in which only the lowest moments of the dis-
tribution function in momentum space are evolved. We
use this formalism in the gray approximation, that is
we only consider energy-integrated moments. Although
the moment formalism can in theory be used with a dis-
cretization in neutrino energies, this makes the simula-
tions significantly more expensive and involves additional
technical difficulties in the treatment of the gravitational
and velocity redshifts, particularly for applications such
as compact binary mergers in which we have both rel-
ativistic speeds and large gravitational redshifts. We
consider three independent neutrino species: the elec-
tron neutrinos νe, the electron antineutrinos ν̄e, and the
heavy-lepton neutrinos νx. The latter is the combination
of 4 species (νµ, ν̄µ, ντ , ν̄τ ). This merging is justified be-
cause the temperatures and neutrino energies reached in

our merger calculations are low enough to suppress the
formation of the corresponding heavy leptons whose pres-
ence would require including the charged current neu-
trino interactions that differentiate between these indi-
vidual species.
In the gray approximation, and considering only the

first two moments of the distribution function, we evolve
for each species projections of the stress-energy tensor of
the neutrino radiation T ab

rad. One possible decomposition
of this tensor is given by

T ab
rad = Juaub +Haub +Hbua +Qab (64)

with Haua = Qabub = 0 and ua the 4-velocity of the
fluid. The energy J, flux Ha and stress tensor Qab of the
neutrino radiation as observed by an observer comoving
with the fluid are related to the neutrino distribution
function by

J =

∫ ∞

0

dνν3
∫
dΩf(ν)(x

a, ν,Ω) (65)

Ha =

∫ ∞

0

dνν3
∫
dΩf(ν)(x

a, ν,Ω)la (66)

Qab =

∫ ∞

0

dνν3
∫
dΩf(ν)(x

a, ν,Ω)lalb (67)

where ν is the neutrino energy in the fluid frame,
∫
dΩ

denotes integrals over solid angle on a unit sphere in mo-
mentum space, and pa = ν(ua + la) with laua = 0 and
lala = 1. We also consider the decomposition of T ab

rad in
terms of the energy, flux and stress tensor observed by
an inertial observer,

T ab
rad = Enanb + F anb + F bna + P ab (68)

with F ana = P abnb = 0 (i.e., F t = P ta = 0 ) and na the
unit normal to the hypersurfaces t = constant.
Conservation of energy and angular momentum implies

∇bT
ab = −∇bT

ab
MHD (69)

which in the 3+1 decomposition can be written as

∂t(
√
γE) + ∂i

[√
γ(αF i − βiE)

]
= (70)

α
√
γ
[
P ikKij − F i(∂iα)/α− Sana

]
∂t(

√
γFi) + ∂k

[√
γ(αP k

i − βkFi)
]
= (71)

√
γ
[
−E∂iα+ Fk∂iβ

k +
α

2
P jk∂iγjk + αSaγia

]
where Sa is the term representing the interaction between
the neutrino radiation and the fluid. This interaction can
be written as

Sa = (η − κaJ)u
a − (κa + κs)H

a (72)

where (η, κa, κs) are respectively the (energy-averaged)
neutrino emissivity, absorption opacity and scattering
opacity, to be calculated depending on the fluid state
and the EoS table information. Scattering is assumed
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to be isotropic and elastic. Inelastic scattering could in
principle be treated within this formalist as absorption
events inmediately followed by emission.

It is important to remark that these equations are ex-
act but they are not in a closed form, since P ik can not
be expressed in terms of (E,F i). The key idea of the M1
scheme is to introduce an approximate analytic closure
for these equations, namely a relation P ik = P ik(E,F i).
If such a relation could be found exactly P ik, the M1
scheme would provide a exact solution of the transport
equation. However, as it depends on the global geome-
try of the radiation field, such a closer can not be exact
in general. The M1 scheme usually adopts the so-called
minerbo closure, which is exact in both the optically thick
limit (with matter and radiation in thermodynamic equi-
librium) and in the propagation of radiation in a trans-
parent medium from a single point source.

1. Optically thin and thick limits

In the optically thin limit we assume that radiation
is streaming at the speed of light in the direction of the
radiation flux, namely

P thin
ij =

FiFj

F kFk
E (73)

which is a explicit relation.
In the optically thick limit we consider that

Qab
thick =

Jthick
3

(gab + uaub) . (74)

where

Jthick =
3

2W 2 + 1

[
(2W 2 − 1)E − 2W 2F kvk

]
(75)

γabH
b
thick =

F a

W
+

Wva

2W 2 + 1

[
(4W 2 + 1)vkF

k − 4W 2E
]

Hn
thick = −Hana =W (E − Jthick − F kvk) , (76)

Hi
thick = γibH

b
thick =

F i

W
− 4

3
JthickWvi −Hn

thickv
i

=
F i

W
+

Wvi

2W 2 + 1

[
(4W 2 + 1)F kvk − 4W 2E

]
(77)

P thick
ij =

4

3
JthickW

2vivj

+W (Hthick
i vj +Hthick

j vi) +
1

3
Jthickγij (78)

2. Minerbo closure

We combine both limits to construct the Minerbo clo-
sure

Pij =
3χ− 1

2
P thin
ij +

3(1− χ)

2
P thick
ij (79)

where χ ∈ [ 13 , 1] is the Eddington factor

χ(ξ) =
1

3
+ ξ2

(
6− 2ξ + 6ξ2

15

)
, ξ2 =

HaH
a

J2
(80)

where with HaH
a = (gab+nanb−nanb)HaHb = HkH

k−
H2

n. In the optically thick regions the flow Ha ≈ 0 (i.e.,
ξ ≈ 0 and χ ≈ 1/3), so Pij ≈ P thick

ij . On the other hand,
in the optically thin regions Ha ≈ J (i.e., ξ ≈ 1 and
χ ≈ 1), so Pij ≈ P thin

ij .
Generic relations between the quantities in fluid and

observer frames are:

Pab =W 2vavbJ +W (gac − navc)vbH
c (81)

+W (gbc − ncvb)vaH
c + (gac − navc)(gbd − nbvd)Q

cd

J = EW 2 − 2W 2F ivi +W 2P ijvivj (82)

Ha =W (E − F kvk)h
a
bn

b +WhabF
b −Whai vjP

ij(83)

(remember that F ana = P abnb = F 0 = P 0b = 0 and
hab = gab+uaub and γab = gab+nanb, such that habn

b =
na−Wua and nah

abγbi = −Wui. We can combine these
relations as follows

−JW +Hana = −EW +WF kvk (84)

JWvi +Hi =WFi −WP k
i vk (85)

such that it is possible to reconstruct Ha = −(Hbnb)n
a+

γakH
k, with −Hana = Hn and γaiH

a = γaiγ
a
kH

k = Hi.
Therefore, the idea is that at each point (i.e., after

the con2prim for the fluid fields) one can compute Pij

using the Minerbo closure (79) and the evolved fields
(E,F i). However, since χ(ξ(J,Ha)) as described by
equation (80), and those fields depend also Pij through
equations (84,85), we obtain an transcendental equation
which needs to be solved numerically. The function to
be solved in this case is

R =
ξ2J2 −HaH

a

E2
= 0 (86)

and we need to take derivatives, either analytical or nu-
merical, of this function. We perform the root finding
by adopting the Brent-Dekker method as implemented
in the gnu scientific library, which uses a combination of
secant and bisection and does not require the analytical
knowledge of the derivatives. The procedure to calculate
this function would be

1. compute (P thin
ij , P thick

ij ) following eqs(73-78).

2. Begin Iteration: use as a guess for χ the previous
step to compute the total Pij using equation (79).

3. compute the components of Ha following these re-
lations

J = W 2(E − 2F kvk + P ijvivj) (87)

Hn = −Hana =W (E − J − F kvk) (88)

Hi = W (Fi − Jvi − P k
ivk) (89)
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4. compute HaH
a = HkH

k − H2
n and (χ, ξ) using

eq.(80).

5. check if the R = 0 as given by equation (86). Oth-
erwise, use this values to compute a new guess for
χ using the Brent-Dekker method and iterate until
convergence.

3. Characteristic structure

The velocities can be calculated both in the thin and
thick regimes, and then interpolated using the Minerbo

closure

λi =
3χ− 1

2
λithin +

3(1− χ)

2
λithick (90)

where

λithin = |βi|+ αmax

[
|F i|√
FkF k

,
E |F i|
FkF k

]
(91)

λithick = |βi|+ αmax

[
2W 2|vi|+

√
(2W 2 + 1)γii − 2W 2vivi

2W 2 + 1
, |vi|

]
.

4. Neutrino number current

Although weak reactions conserver the total lepton
number of the system, they can alter the electron frac-
tion of the matter. For this reason, it is desirable to also
evolve the number density of neutrinos. To this aim, we
follow a phenomenological approach proposed by Fou-
cart, where for each neutrino species we introduce a neu-
trino number current Na

(ν) with ν = (νe, ν̄e, νx), following

a conservation equation

∇aN
a =

√
−gC =

√
−g(η0 − κ0an) (92)

where n = −Naua is the neutrino density in the fluid
frame and (κ0a, η

0) are the neutrino number absorption
and emission coefficients, also to be computed from the
fluid state and the information in the EoS tables.

Assuming that the neutrino number density and the
radiation flux are aligned (i.e., which is a reasonable as-
sumption but not true in general), one can define the
following closure relation

Na = nfa = n(ua +
Ha

J
) . (93)

The conservation equation for the neutrino number
current, within the 3+1 decomposition, can be written
as

∂t(
√
γnΓ) + ∂i(α

√
γnf i) = α

√
γ(η0 − κ0an) (94)

where

Γ = αf0 =W − 1

J
Hana =W

(
E − Fav

a

J

)
, (95)

f i = W (vi − βi

α
) +

Hi

J
(96)

We can set N = −naNa = αnf0 = nΓ. With the
N0+M1 approach one can compute the average energy of
the neutrinos ϵν , since in the fluid frame approximately
J ≈ n < ϵν >, that is

< ϵν >=
J

n
=

ΓJ

N
=
W (E − F ivi)

N
(97)

which gives a way to calculate an average energy that
varies with space and time.

5. M1 final set of equations

Let us define the densitized conserved quantities as

Ē =
√
γE , F̄i =

√
γFi , N̄ =

√
γnΓ =

√
γN , (98)

The evolution equations, in terms of the BSSN quantities
and the densitized conserved fields, can be written as
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∂tN̄ + ∂k[(−Wβk + αWvk + α
Hk

J
)
N̄

Γ
] = α

√
γC (99)

∂tĒ + ∂k[−βkĒ + αF̄ k] =
α

χ
P̄ ijÃij +

α

3
trP̄ trK − F̄ j∂jα+ α

√
γSn (100)

∂tF̄i + ∂k[−βkF̄i + αP̄ k
i ] =

α

2χ

(
P̄ jk∂iγ̃jk − trP̄ ∂iχ

)
+ F̄j∂iβ

j − Ē∂iα+ α
√
γSi (101)

where P̄ij =
√
γPij and trP̄ = γjkP̄

jk = γ̃jkP̄
jk/χ.

The source terms in the neutrino (which appears ex-
actly in the same form but with the opposite sign in the
fluid MHD equations) are given by:

C = η0 − κ0an = η0 − κ0a
N

Γ
(102)

Sa =W (η − κaJ)v
a − (κa + κs)H

a (103)

Sn = −naSa =W (η − κaJ)− (κa + κs)H
n

=W
[
(η + κsJ)− (κa + κs)(E − Fiv

i)
]

(104)

Si = γibSb =W (η − κaJ)v
i − (κa + κs)H

i (105)

To close this system of equations, we need three ad-
ditional ingredients: a prescription for the computation
of Pij(E,Fi) (i.e., a closure relation like the Minerbo de-
scribed above), a prescription for the computation of the
number flux, specific to the evolution of the number den-
sity, and the collisional source terms (Sa, C).

6. Time integration of equation with stiff source

Notice that we can split the vector of fields U in two
parts, one containing some stiff terms and other which
all the rhs can be treated explicitely, respectively U =
(V,W). So, in general the evolution equations can be
written as

∂tW = FW (V,W) (106)

∂tV = FV (V,W) +
1

ϵ(W)
RV (V,W) . (107)

where we have considered that the relaxation parame-
ter ϵ can depend also on the W fields. The evolution
procedure to compute each step U (i) can be split in two
substeps

1. compute the explicit intermediate values
{V∗,W∗}, that is,

W∗ = Wn + ∆t

i−1∑
j=1

ãijFW (U(j))

V∗ = Vn + ∆t

i−1∑
j=1

ãijFV (U
(j))

+ ∆t

i−1∑
j=1

aij
1

ϵ(j)
RV (U

(j)) (108)

where we have defined ϵ(j) = ϵ(W(j)).

2. compute the implicit part, involving only V, by
solving the implicit equation

V(i) = V∗ + aii
∆t

ϵ(i)
RV (V

(i),W(i))

W(i) = W∗ (109)

There are different ways to solve the equation in the
second step (109).
If the source terms depend linearly on the evolution

fields, then the stiff part can be written in the following
way,

RV (V,W) = A(W)V + S(W) (110)

In this way, the implicit equation can be solved just by
inverting the matrix, namely

V(i) = [I − aii
∆t

ϵ(i)
A(W∗)]−1 (V∗ + aii

∆t

ϵ(i)
S(W∗))

W(i) = W∗ (111)

If the sources depend non-linearly on the evolution
fields, then one need to solve the full non-linear implicit
problem

G = V(i) −V∗ − aii
∆t

ϵ(i)
RV (V

(i),W(i)) (112)

which will require the Jacobian J = ∂RV

∂V(i) , which can be
found explicitly in Radice paper, and it will be discussed
in detail in the next subsection.
Another option would be to linearize the stiff term

around {V′} (assuming W(i) is known), namely

RV (V
(i),W(i)) ≈ RV (V

′,W(i)) (113)

+

(
∂RV

∂V

)
V′,W(i)

(V(i) −V′)

By defining A(V′,W(i)) ≡
(
∂RV

∂V

)
V′,W(i) , substitut-

ing the previous expansion (113) in (109), adding and
subtracting V′ on the right-hand-side, and rearrang-
ing the terms, it is obtained an expression that can
be solved explicitly by inverting the matrix M ≡ [I −
aii

∆t
ϵ(i)

A(V′,W(i))]−1, namely

V(i) = V′ +M [V∗ −V′ + aii
∆t

ϵ(i)
RV (V

′,W(i))] (114)



11

7. Jacobian

We will solve the full non-linear equation

G = V(i) −V∗ − aii
∆t

ϵ(i)
RV (V

(i),W(i)) = 0(115)

The N0 equation is just a scalar equation with a linear
stiff term, which can be solved analytically, namely

N̄ = N̄∗ + aii∆tα
√
γ

(
η0 − κ0a

N

Γ

)
(116)

By dividing by
√
γ and defining N∗ = N̄∗/

√
γ, this rela-

tion can be inverted directly as

N =
N∗ + aii∆tαη

0

1 + aii∆tακ0a/Γ
(117)

Since Γ depends on (E,Fi) as it is specified in eq.(123),
namely

Γ =W

(
E − Fiv

i

J

)
(118)

this equation for N will be solved only after these fields
have been updated.

The M1 system of equations is coupled and can not
be solved directly. Instead, it forms a 4D system which
needs to be solved simultaneously with an iterative
method. Again, for the undensitized variables (i.e., di-
viding by

√
γ), the equations to be solved are

G = E − E∗ (119)

− aii∆tαW
[
(η + κsJ)− (κa + κs)(E − Fiv

i)
]

Gi = Fi − F ∗
i (120)

− aii∆tα [W (η − κaJ)vi − (κa + κs)Hi]

The multidimensional NR solver involves the inverse of
the Jacobian of G with respect to V = (E,Fi). The
solution at the iteration n can be calculated from the
solution at the iteration n− 1 as follows

Vn = Vn−1 −
(
∂G

∂V

)−1

G (121)

and where the Jacobian of G can be written in terms of
the Jacobian of RV easily, namely(

∂G

∂V

)
= I− aii

∆t

ϵ(i)

(
∂RV

∂V

)
(122)

The stiff problem involves the fields V = (E,Fi, N),
although actually it can be decoupled into a part involv-
ing V = (E,Fi) and a simple implicit equation for N
to be solved after those fields have been updated. Let
us define κas = κa + κs and write J,Hi as a function of
E, Ji, χ for the Minerbo closure, namely

J(E,Fi) = B0 + dthinBthin + dthickBthick (123)

Hi(E,Fi) = −(av0 + dthinavthin + dthickavthick)vi

−dthinafthinf̂i − (aF0 + dthickaFthick)Fi (124)
where we have also defined

f̂i =
Fi√
FkF k

, dthick =
3

2
(1− χ) , dthin = 1− dthick ,

B0 =W 2
[
E − 2vkF

k
]
, (125)

Bthin =W 2E(vkf̂
k)2 , (126)

Bthick =
W 2 − 1

2W 2 + 1

[
4W 2(vkF

k) + (3− 2W 2)E
]
,(127)

av0 =WB0 , (128)

avthin =WBthin , (129)

avthick =WBthick (130)

+
W

2W 2 + 1

[
(2W 2 − 1)(vkF

k) + (3− 2W 2)E
]
,

afthin =WE(vkf̂
k) , (131)

aF0 = −W , (132)

aFthick =Wv2 . (133)

The Jacobian J ≡
(
∂RV

∂V

)
of the undensitized fields is

then given by

J00 = −αW
(
κas − κs

∂J

∂E

)
, (134)

J0j = +αW

(
κs

∂J

∂Fj
+ κasv

j

)
, (135)

Ji0 = −α
(
κas

∂Hi

∂E
+Wκa

∂J

∂E
vi

)
, (136)

Jij = −α
(
κas

∂Hi

∂Fj
+Wκavi

∂J

∂Fj

)
. (137)

where the necessary derivatives are
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∂J

∂E
=W 2 + dthin(vkf̂

k)2W 2 + dthick
(3− 2W 2)(W 2 − 1)

1 + 2W 2
, (138)

∂J

∂Fj
= 2W 2

(
−1 + dthin

E(vkf̂
k)

F
+ 2dthick

W 2 − 1

1 + 2W 2

)
vj − 2dthin

W 2E(vkf̂
k)2

F
f̂ j , (139)

∂Hi

∂E
=W 3

(
−1− dthin(vkf̂

k)2 + dthick
2W 2 − 3

1 + 2W 2

)
vi − dthinW (vkf̂

k)f̂i , (140)

∂Hi

∂Fj
=W

(
1− dthin

E(vkf̂
k)

F
− dthickv

2

)
δji + 2W 3

[
1− dthin

E(vkf̂
k)

F
− dthick

(
v2 +

1

2W 2(1 + 2W 2)

)]
viv

j

+2dthin
WE(vkf̂

k)

F
f̂if̂

j + 2dthin
W 3E(vkf̂

k)2

F
vif̂

j − dthin
WE

F
f̂iv

j . (141)

A simple case, very useful for testing purposes, can be
recovered at the zero fluid’s velocity limit vi = 0 → J =
E,Hi = Fi and the stiff terms are just

RE = α (η − κaE) , RF = −ακasFi (142)

such that the Jacobian matrix is diagonal

J00 = −ακa , Jij = −ακasδij (143)

and very easy to invert, either assuming that it is linear
or using the full non-linear expression.

8. Simplified system

Let us consider a flat spacetime such that (α = 1, βi =
0, γij , δij). It is straightforward to check that the M1
equations reduce to

∂tN + ∂k[(Wvk +
Hk

J
)
N

Γ
] = C0

∂tE + ∂k[F
k] = Sn

∂tFi + ∂k[P
k
i] = Si

Let us consider also the simplification vi = 0. In that
case, the optically thick limit reduces to

Jthick = E → P thick
ij =

1

3
Eδij . (144)

while that the optically thin remains the same

P thin
ij =

FiFj

F kFk
E (145)

We combine both limits to construct the Minerbo closure

Pij =
3χ− 1

2
P thin
ij +

3(1− χ)

2
P thick
ij (146)

where ξ is the Eddington factor. Since with vi = 0 we
have the following relations

J = E , Hn = 0 , Hi = Fi (147)

which imply HaH
a = HkH

k −H2
n = FiF

i and

χ(ξ) =
1

3
+ ξ2

(
6− 2ξ + 6ξ2

15

)
, ξ2 =

FiF
i

E2
(148)

For the source terms, the first observation is that Γ =
1, and that most of the terms vanish for vi = 0, namely

∂tN + ∂k[
F k

E
N ] = (η0 − κ0aN) (149)

∂tE + ∂k[F
k] = (η − κaE) (150)

∂tFi + ∂k[P
k
i] = −(κa + κs)Fi (151)

9. Calculating the emission and absorption coefficients

Emissivity, absorption and scattering coefficients are
kept fixed throughout the implicit time integration.
This can cause numerical scheme to oscillate if mat-
ter is thrown out of equilibrium over a timescale τ =
(c
√
κa(κa + κs))

−1 small compared with ∆t. We assume
that τ ≥ ∆t and that neutrinos and fluid are in thermo-
dynamical equilibrium (i.e., equilibrium of temperature,
chemical potential,...). That means that the temperature
T is taken to be the fluid temperature, while the neutrino
chemical potential are evaluated at equilibrium using the
EoS at the fluid density, temperature and electron frac-
tion, separately for each neutrino flavor, as follows

µνe = µe + µp − µn , µν̄e = −µνe , µνx = 0 . (152)

The value of these chemical potentials, for neutrinos in
equilibrium with the fluid, are obtained directly from the
equation-of-state table. Notice also that in general there
should be an extra term−Q = 1.2935MeV taking into ac-
count the rest-mass-energy difference between a neutron
and a proton. We believed that term is already included
in the table information.
We compute the source terms in the neutrino equa-

tions by assuming that the neutrinos obey a Fermi-Dirac
distribution with temperature Tν and chemical potential
µν . In that case, we have

f(ϵν) =
1

1 + exp[(ϵν − µν)/(KBTν)]
(153)
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where ϵν is the neutrino energy, µν is the neutrino chem-
ical potential, kB is the Boltzmann constant, and Tν is
the temperature of the neutrinos, calculated above.

Within these assumptions, the black-body function for
the neutrino energy density is

Bν(Tν) = gi
4π

(hc)3
(kBTν)

4F3(ην) (154)

where F3 is the Fermi function of order 3 and ην =
µν/(kBT ) is the degeneracy parameter of the neutri-
nos. Since [hc] = ergs cm and [kBT ] = ergs, then
[B] = ergs/cm3. Here ge = 1 and gX = 4. The equilib-
rium number density of neutrinos is computed as

Bν(Tν) = gi
4π

(hc)3
(kBTν)

3F2(ην) (155)

which has units of [B] = 1/cm3. Notice that these ex-
pressions could be used to compute a neutrino temper-
ature Tν by setting Jν = Bν , nν = Bν and invert-
ing those two relations to find Tν . At this point it is
important to stress few things about the units. The
units of the opacities goes as the inverse of the mean
free path, then [κ] = 1/cm. The emissivities are basi-
cally the emission rates, that for the number of neutrinos
have units [η0] = 1/(cm3s) and for the neutrino energy
[η1] = ergs/(cm3s). Notice that we can get a relation
between the average energy and the temperature of the
neutrinos as

< ϵν >=
Bν

Bν
=
F3(ην)

F2(ην)
(kBTν) (156)

We can estimate then the neutrino temperature as

kBTν =
F2(ην)

F3(ην)
< ϵν >

where the average energy of the neutrinos < ϵν >, using
that in the fluid frame approximately J ≈ n < ϵν >, can
be calculated as

< ϵν >=
J

n
=

ΓJ

N
=
W (E − F ivi)

N
(157)

In the gray approximation, one uses {Bν(T ),Bν(T )}
with T the temperature of the fluid. The mismatch
between the fluid temperature and the neutrino tem-
perature introduces a correction factor in the energy-
integrated opacities for (νe, ν̄e), namely

κa = κeqa [max(1,
Tν
T

)]2 = κeqa [max(1,
< ϵν >

< ϵeq >
)]2 ,(158)

κs = κeqs [max(1,
Tν
T

)]2 = κeqs [max(1,
< ϵν >

< ϵeq >
)]2 ,(159)

where < ϵeq >= Bν(T )/Bν , that is, the average energy of
the BB spectra of the neutrinos in equilibrium with the
fluid. We will try to use in general the expression with

the temperature, to have a feeling of the temperature of
the neutrinos.
In order to guarantee that the neutrinos are in equilib-

rium with the fluid in the optically thick regions, we then
compute the free-streaming emission due to charged-
current reactions and the absorption due to pair pro-
cesses through an energy-integrated version of Kirch-
hoff’s law. At a given energy ϵν , Kirchhoff’s law

ηeq = κeq
∫
B(T, µν)dν, (160)

gives us a relation between the emissivity, the absorption
opacity, and the equilibrium spectrum of the neutrino
radiation. Given the blackbody function, we compute
the νe and ν̄e emission coefficients and the νx absorption
coefficients using Kirchhoff’s law, namely

ηνe = c κa,νeBνe(T ) , (161)

ην̄e
= c κa,ν̄e

Bν̄e
(T ), (162)

c κa,νx
=

ηνx

Bνx
(T )

(163)

We apply the same treatment to the neutrino number
emissivities and opacities, but using B instead of B.
Notice that the Ruffert and Janka opacity and emissiv-

ity are probably not compatible with Kirchhoff’s law out
of the box. In the long term it would be better to have
reactions that have detailed balance built in, rather than
using Kirchhoff. In the case of the heavy-lepton neu-
trinos, the main production channel is nucleon-nucleon
bremsstrahlung, while there is no absorption through
charge current reactions (no muons), so we need to com-
pute an effective absorption from the emission and not
the other way around.
In summary, the logical procedure would be

(ρ, T, Ye) → (µe, µp, µn) → µν (164)

(J, n) →< ϵν >, Tν (165)

(µν , ϵν , T, Tν) → (Bν ,Bν) (166)

(µν , ϵν , T ) → (κs,νi , κa,νe , κa,ν̄e , ηνx) (167)

10. Coupling neutrino matter

The M1+N0 equations, for each neutrino specie, reads
as

∂t(
√
γNνe) + ... = α

√
γCνe (168)

∂t(
√
γEνe) + ... = ...+ α

√
γSνe

n (169)

∂t(
√
γF νe

i ) + ... = ...+ α
√
γSνe

i (170)

∂t(
√
γN ν̄e) + ... = α

√
γCν̄e (171)

∂t(
√
γEν̄e) + ... = ...+ α

√
γS ν̄e

n (172)

∂t(
√
γF ν̄e

i ) + ... = ...+ α
√
γS ν̄e

i (173)

∂t(
√
γNνx) + ... = α

√
γCνx (174)

∂t(
√
γEνx) + ... = ...+ α

√
γSνx

n (175)

∂t(
√
γF νx

i ) + ... = ...+ α
√
γSνx

i (176)
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while that the modified GRMHD equations become

∂t(
√
γDY ) + ... = − sgn(νi)mNα

√
γCνi (177)

∂t(
√
γτ) + ... = ...− α

√
γ
(
Sνe
n + S ν̄e

n + Sνx
n

)
(178)

∂t(
√
γSi) + ... = ...− α

√
γ
(
Sνe
i + S ν̄e

i + Sνx
i

)
(179)

where sgn(νi) is 1 for νe, -1 for ν̄e and 0 for heavy-lepton
neutrinos νx. The mass of the nucleon is mN ≈ 1.6749×
10−30g.

11. Neutrino processes

Neutrino emission is dominated by the following
charged- current interactions:

e− + p→ n+ νe , (180)

e+ + n→ p+ ν̄e , (181)

and three pair process interactions: electron-positron
pair annihilation

e+ + e− → ν̄i + ν̄i (182)

plasmon decay,

γ + γ → ν̄i + ν̄i (183)

and nucleon-nucleon bremsstrahlung,

N +N → N +N + ν̄i + ν̄i (184)

Here the subscript “i” represents all neutrino species, and
N stands for nucleons. The inverse reaction of the in-
teractions above are responsible for neutrino absorption.
Therefore, we need to compute both κa and η.
Lastly, we also consider the neutral-current neutrino

scattering off nucleons,

νi +N → νi +N (185)

Note that we neglect electron-neutrino/antineutrino scat-
tering for simplicity, noting that its contribution to the
opacity is smaller than that for nucleon scattering by a
typical factor of ≈ 100 in the HMNS remnant.

E. LES

extension of the LES for a microphysical EoS (new,
calculated by Federico)

Notice that we hereafter have simplified the notation
by removing the tildes and bars from the filtered fields
and fluxes, for the sake of clarity. All fields in the equa-
tions are implicitly meant to be the filtered values (i.e.,
simply resolved by the discretized equations, as in any
simulation).

∂t(
√
γD) + ∂k[−βk√γD + α

√
γ(Nk − τkN )] = 0 ,

∂t(
√
γDY ) + ∂k[−βk√γDY + α

√
γ(NY

k − τkNY
)] =

α

W

√
γDRY

∂t(
√
γSi) + ∂k[−βk√γSi + α

√
γ(T k

i − γijτ
jk
T )] =

√
γRS

i ,

∂t(
√
γU) + ∂k[−βk√γU + α

√
γSk] =

√
γRU ,

∂t(
√
γBi) + ∂k[

√
γ(−βkBi + βiBk)

+α
√
γ(γkiϕ+Mki − τkiM )] =

√
γRB

i ,

∂t(
√
γϕ) + ∂k[−βk√γϕ+ α c2h

√
γBk] =

√
γRϕ . (186)

we can define the energy without the rest-mass density
τ = U −D with evolution equation

∂t(
√
γτ) + ∂k[−βk√γτ + α

√
γ(Sk −Nk + τkN )] =

√
γRU

(187)
The fluxes consist of the following standard terms:

Nk = vkD , (188)

Nk
Y = vkDY , (189)

Mki = Bivk −Bkvi , (190)

T ki = hW 2vkvi − EkEi −BkBi + γki
[
p+

1

2
(E2 +B2)

]
=

1

2

(
viSj + vjSi

)
+ γijp− 1

W 2

(
BiBj − 1

2
γijB2

)
− 1

2
(Bkvk)

[
Bivj +Bjvi − γij(Bmvm)

]
, (191)

(where Ei = −ϵijkvjBk), and of the additional SGS
terms:

τkN = − CN ξ Hk
N ,

τkNY
= − CN ξ Hk

NY
,

τkiT = − CT ξ Hki
T ,

τkiM = − CM ξ Hki
M . (192)

The cumbersome expressions of the tensors H have been
obtained in detail for the special [12] and general rela-
tivistic [13] cases.
Here we apply the latter, extending the expressions re-

ported in the Appendix A of Ref. [14] as to accomodate
for the additional variables Ye and DY (primitive and
conserved, respectively). Besides the new SGS tensor
Hk

Ne
, the only other modification of the previous results

arise on the term Hp ≡ ∇ dp
dCa · ∇Ca from the new de-

pendence in the pressure, i.e., p(ρ, ϵ, Ye).

dp

dCa
=
dp

dρ

dρ

dCa
+
dp

dϵ

dϵ

dCa
+

dp

dYe

dYe
dCa

(193)

The only non-zero additional elements of the Jacovian
(conserved-to-primitive) dCa

dP b and its inverse dPa

dCb
1 are,

1 This inversion is the only non-trivial new calculation, performed
essentially using Mathematica.
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respectively,

dDY

dYe
= D ,

dDY

dP a′ = Ye
dD

dP a′

dYe
dDY

=
1

D
,

dYe
dD

= −Ye
D

where the tilde in P a′
denote the “old” set of primitive

variables (i.e., excluding Ye). Hence, we note that the
new variables are only partially coupled to the system
through the field D. In particular, we notice that dρ

dDY
=

dϵ
dDY

= 0. And we are now in conditions of computing

(193) and, therefore, to obtain the new expression forHp.

Hp = ∇
(
dp

dρ

dρ

dCa′ +
dp

dϵ

dϵ

dCa′

)
· ∇Ca′

+∇
(
dp

dYe

dYe
dCa

)
· ∇Ca

= Hold
p +∇

(
1

D

dp

dYe

)
· ∇DY −∇

(
Ye
D

dp

dYe

)
· ∇D

= Hold
p +∇ dp

dYe
· ∇Ye −

2

D

dp

dYe
∇Ye · ∇D (194)

The coefficient ξ = γ1/3∆2/24 has the proportional-
ity to the spatial grid squared, which is typical of SGS
models and ensures by construction the convergence to
the continuous limit (vanishing SGS terms for an infi-
nite resolution). Importantly, for each equation there is
a pre-coefficient Ci, which is meant to be of order one for
a numerical scheme having a mathematically ideal Gaus-
sian filter kernel and neglecting higher-order corrections.
However, finite-difference numerical methods are usually
more dissipative (and dispersive).

The relations for Ψ̃ and Hs are given by:

Ψk
v =

2

Θ

{
∇(v ·B) · ∇Bk −∇Θ · ∇vk +

Bk

E
[
Θ∇Bj · ∇vj +Bj∇Bj · ∇(v ·B)−Bj∇vj · ∇Θ

]}
,

Ψki
M =

4

Θ

[
Θ∇B[i · ∇vk] +B[i∇Bk] · ∇(v ·B)−B[i∇vk] · ∇Θ

]
,

ΨΘ =
Θ

Θ− E2

{
∇Bj · ∇Bj −∇Ej · ∇Ej −B[ivk] Ψ

ki
M

}
, ΨA =W 2

(
p
dp

dϵ
+ ρ2

dp

dρ

)
,

Hp =
EW 2(Θ− E2)

(ρ E −ΨA)(Θ− E2)W 2 +ΨA Θ

{
ρ

(
∇dp

dρ
· ∇ρ+∇dp

dϵ
· ∇ϵ

)
− 2

dp

dϵ
∇ρ · ∇ϵ

−
(
E dp
dϵ

−ΨA

)[
W 2

4
∇W−2 · ∇W−2 +∇W−2 · ∇(ln ρ)

]
− 2

W 2

dp

dϵ

[
∇Bj · ∇Bj −W 4∇W−2 · ∇h

]
(195)

−
(
E dp
dϵ

+ΨA

)[
vjΨ

j
v +∇vj · ∇vj +W 2 ∇W−2 · ∇W−2

]
+

ΨΘ

EΘ

[(
E dp
dϵ

+ΨA

)
(Θ− E2)− ΨA Θ

W 2

]}
+ ∇ dp

dYe
· ∇Ye −

2

D

dp

dYe
∇Ye · ∇D

HΘ = ΨΘ +
Θ

Θ− E2
Hp , (196)

Hk
v := Ψk

v −
(
vk +

v ·B
E

Bk

)
HΘ

Θ
, (197)

Hk
N = 2∇D · ∇vk +DHk

v , Hk
Ne

= 2∇DY · ∇vk +DY H
k
v , (198)

Hki
M = 2B[iHk]

v + 4∇B[i · ∇vk] → Hi
E =

1

2
ϵijkH

jk
M , (199)

Hki
T = 2

[
∇E · ∇(vkvi) + E

(
v(kHi)

v +∇vk · ∇vi
)
+ vkviHp

]
− 2

[
∇Bk · ∇Bi +∇Ek · ∇Ei + E(kH

i)
E

]
+ (γki − vkvi)

[
Hp +∇Bj · ∇Bj +∇Ej · ∇Ej + EjH

j
E

]
, (200)

Notice that we need the derivatives
(dp/dρ, dp/dϵ, dp/dY e) in order to compute the gradient
SGS terms. They can be computed analytically for

hybrid EoS, but only numerically for the tabulated ones.
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III. NUMERICAL IMPLEMENTATION

A. EoS

discuss how we are reading the info from the ta-
ble, what units we use, what quantities we com-
pute (dp/deps,dp/drho,cs2), and how to perform the
con2prim.

High-resolution shock-capturing schemes integrate the
fluid equations in conservation form for the conserva-
tive variables, while the fluid equations are written in
a mixture of conserved and primitive variables. It is well
known that the calculation of primitive variables from
conserved variables for relativistic fluids requires solving
a transcendental set of equations, which are only closed
once an equation of state (EoS) is provided.

The dominant energy condition places constraints on
the allowed values of the conserved and primitive vari-
ables

D ≥ 0, τ ≥ 0, S2 ≤ (D + τ)2, p ≤ (τ +D) (201)

and depending on the EoS the second condition can be
sharpened to S2 ≤ (2D+τ)τ , as far as τ remains positive.

1. Hybrid EoS

We consider that both the pressure and the internal
energy have a cold and a thermal part, namely

p = pcold(ρ) + pth , ϵ = ϵcold(ρ) + ϵth (202)

where that thermal pressure is modeled by using the ideal
gas EoS pth = (Γth − 1)ρϵ, such that the total pressure
can be written as

p = pcold(ρ) + (Γth − 1)ρ[ϵ− ϵcold(ρ)] (203)

The cold contribution to pressure and the internal en-
ergy only depend on the density and can be modeled with
a piece-wise polytrope, namely:

pcold(ρ) = Kiρ
Γi , ϵcold(ρ) = ai +

Ki

Γi − 1
ρΓi−1 (204)

if ρi−1 ≤ ρ ≤ ρi. The constant Ki and ai can be found
imposing continuity, leading to the following recursive
formulas

ai = ai−1 +
Ki−1

Γi−1 − 1
ρ
Γi−1−1
i−1 − Ki

Γi − 1
ρΓi−1
i−1 (205)

Ki = Ki−1ρ
Γi−1−Γi

i−1 (206)

where a0 = 0 and {K0,Γ0} are given values. In general
we will use an EoS with 4 different pieces, such that i =
0, 1, 2, 3.

One can calculate explicitly the derivatives of the pres-
sure with respect to the density and the internal energy,

needed for the gradient SGS model in the LES. The latter
is straightforward

dp

dϵ
= (Γth − 1)ρ (207)

For the other one we need to calculate the intermediate

dpcold
dρ

=
Γipcold
ρ

,
dϵcold
dρ

=
pcold
ρ2

(208)

Combining all this info, we obtain the final expression

dp

dρ
= (1 + Γi − Γth)

pcold
ρ

+ (Γth − 1)(ϵ− ϵcold) (209)

We also need to modify the calculation of the sound
speed just by using the general definition

c2s =
ρ

h

[
∂p

∂ρ
+

p

ρ2
∂p

∂ϵ

]
s=cte

=
Γthp+ (Γi − Γth)pcold

h
(210)

Although we have our own solver to recover the prim-
itive fields from the conserved within this EoS, we have
found that the procedure in Reprimand is more robust,
so we have incorporated those libraries to solve for this
case.

2. Microphysical EoS

Our method for solving these equations with a finite-
temperature EoS is a modification of the algorithm that
we use for the ideal gas EoS; the most significant change
being that the internal energy must be calculated sepa-
rately from the pressure using the table.
The list of primitive fields is given by {ρ, T, Ye, p, vi},

namely the rest-mass density, the temperature of the
fluid, the electron fraction (i.e., the amount of electrons
wrt neutrons), the pressure p = p(ρ, T, Ye) that is usually
given in a tabulated form and the fluid velocity.
The evolved conserved variables are defined as

D ≡ ρW (211)

Si ≡
(
hW 2 +B2

)
vi −

(
Bjvj

)
Bi (212)

τ ≡ hW 2 +B2 − P − 1

2

((
Bivi

)2
+
B2

W 2

)
−D(213)

DY ≡ ρWYe. (214)

where the enthalpy is given as a function of the internal
energy ϵ, so we need to extract it from the EoS, namely
ϵ = ϵ(ρ, T, Ye).
The dominant energy condition places constraints on

the allowed values of the conserved variables

D ≥ 0, S2 ≤ (D + τ)2, DY ≥ 0, (215)

and depending on the EoS the second condition can be
sharpened to S2 ≤ (2D + τ)τ , although it is not clear
that it will work for this case. These constraints may
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be violated during the evolution due to numerical error,
and they are enforced before solving for the primitive
variables. A minimum allowable value of the conserved
density Dvac is chosen, and if D falls below this value
we set vi = 0 and D → Dvac. We choose Dvac as low as
possible for the unmagnetized neutron star binary, which
is about nine orders of magnitude smaller than the ini-
tial central density of the stars. For the magnetized case
our solver fails for such tenuous atmospheres, and it is
increased by two orders of magnitude. If the second in-
equality is violated, then the magnitude of Si is rescaled
to satisfy the inequality. Finally, DY is required to sat-
isfy the constraint on D, and the computed value of Ye
must be in the equation of state table.

The primitives to be found are the density, ρ, pressure
P , electron fraction Ye, internal energy density ϵ (i.e., or
the temperature T , once the EoS is known) and velocity
three-vector vi. The magnetic field is at the same time
conserved and primitive field. We write the transcenden-
tal equations in terms of the new rescaled variable

x ≡ hW 2

ρW
, (216)

where h is the total enthalpy h ≡ ρ(1 + ϵ) + P , and
calculate Ye from the evolution variables DY /D. Follow-
ing [15], we rescale the conserved fields in order to get
order-unity quantities, namely

q ≡ τ/D, r ≡ S2/D2, s ≡ B2/D, t ≡ BiS
i/D3/2.

(217)
1D solver: Using data from the previous time step to

calculate an initial guess for x, we iteratively solve these
equations for x within the bounds

1 + q − s < x < 2 + 2q − s , (218)

so that the final procedure can be written as

1. From the equation for SiSi, calculate an approxi-
mate Lorentz factor Ŵ

Ŵ−2 = 1− x2r + (2x+ s) t2

x2 (x+ s)
2 .

2. From the definition of D, calculate

ρ̂ =
D

Ŵ
.

3. From the definition of τ and the total enthalpy,
calculate

ϵ̂ = −1 +
x

Ŵ

(
1− Ŵ 2

)
+ Ŵ

[
1 + q − s+

t2

2x2
+

s

2Ŵ 2

]
.

4. Use the EoS table, invert ϵ̂ to find the correspond-
ing temperature and then the pressure P (ρ̂, ϵ̂, Ye).

5. Update the guess for x by solving the equation
f(x) = 0 using the Brent method, being f(x) just
the definition of the unknown x,

f(x) = x−
(
1 + ϵ̂+

P (ρ̂, ϵ̂, Ye)

ρ̂

)
Ŵ

The root of f(x) = 0 from Step 5 becomes the new guess
for x, and this process is repeated iteratively until the
solution for x converges to a specified tolerance, which is
ensured if there is a physical solution within the bounds.
One advantage of this algorithm is that f(x) is a function
of a single variable, and, in contrast to a multiple variable
search for a root, robust methods can be used to find any
root that can be bracketed.
3D solver: Solvers for 2 or 3 variables can be faster

in general than solving for only one, since there are less
implicit calls T = T (ρ, T, Ye). We use the 3D solver from
Moesta for the field z = ρhW 2

We can extend our solver to 3D easily by defining the
following functions (i.e., the definition of τ , S2 and x) to
be satisfied for the variables {W, z, T}, namely[

τ +D − z −B2 +
(BiSi)

2

2z2
+ P

]
W 2 − B2

2
= 0(219)[

(z +B2)2 − S2 − (2z +B2)

z2
(BiSi)

2

]
W 2

−(z +B2)2 = 0 (220)

z −DW − PW 2

DW
− ϵ(ρ, T, Ye) (221)

taking into account that ρ = D/W and Ye = DY /D. A
multi-dimensional Newton-Raphson solver requires the
Jacobian of these equations, which can be computed an-
alytically or numerically. Since this scheme also employs
the temperature directly as an unknown, it does not re-
quire any inversions with the EOS. Once the system has
been solved with a 3D NR scheme, one recovers the final
primitives

vi =
γijSj

z +B2
+

(BjSj)B
i

z(z +B2)
(222)

ϵ = ϵ(ρ, T, Ye) (223)

Because of numerical error, a solution to these equa-
tions may either fall outside the physical range for the
primitive variables, or a real solution for x may not ex-
ist. The solutions for ρ, T , and Ye are, at a minimum,
restricted to values in the table, and they are reset to new
values (the minimum allowed value plus ten percent) if
necessary. If a real solution for the primitive variables
does not exist, the primitive variables are interpolated
from neighboring points, and the conserved variables are
reset to be consistent. If a valid interpolation stencil can
not be constructed because the solver also failed at the
neighboring points, then the update fails, and the run is
terminated. This failure occurs very rarely and may be
remedied by slightly increasing the density floor Dvac.
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Technical details :There are several files, associated
to the EoS, necessary to perform evolutions both with
HAD or with MHDuet.

In had, we used shen.h5 (from stellarcollapse.org),
which contains the full information about the EoS as a
function of the coordinates (ρ, T, Ye). From this one we
created several ascii files to help on initializing the initial
data, like eos table.d and eos table had.dat.

In MHDuet we started by changing the name of the
shen.h5 file to eostable.h5, which is more generic. It
still contains the whole information from the table and
it is the one that can be downloaded from stellarcol-
lapse.org. This data does not have the right format to be
used with the Simflowny routines. Therefore, we extract
the quantities needed for the initial data, the con2prim
and the leakage, and save them in three different files
with the right format, as we will describe before. These
files are created with the python script esotable2hdf5.py,
in script/Simflowny/tabEoS and also in newleakage/ID.
When creating the new tables, we convert the
primitive fields from the table from log10 to nat-
ural log units, and from cgs to geometrized units.
This makes the code faster, as natural log is faster
and we do not have to perform the conversions
each time. If we denote û = (ρ̂, T̂ , ϵ̂) the fields in the
table and u = (ρ, T, ϵ) the ones that we use to evolve the
code, to convert from one to the other we perform

ρ̂ = log ρ → ρ = exp(ρ̂) (224)

T̂ = log T → T = exp(T̂ ) (225)

ϵ̂ = log(ϵ+ ϵshift) → ϵ = exp(ϵ̂)− ϵshift (226)

The values of eos rhomin, eos rhomax, eos yemin,... are
computed automatically by checking the bounds in the
table. The most sensible one is epsmin (ϵ̂min), for
which we need to search in the whole table. Then, the
mintableEnergy can be recovered as ϵmin = exp(ϵ̂min)−
ϵshift. Notice that ϵshift is a parameter printed by the
script esotable2hdf5.py, which needs to be introduced as
an input in the MHDUET parameter file, similar to vac-
uum rho (i.e., the density in the atmosphere), initialYe
(i.e., constant or negative if beta-equilibrium) and ini-
tialTemperature (i.e., from the Lorene table). For the
gradient SGS model we also need derivatives of the pres-
sure with respect to (ρ, ϵ, Ye). They can be computed
analytically for hybrid EoS, but for tabulated ones the
easiest way is to compute the numerical derivatives of
p̂ = p̂(ρ̂, ϵ̂, Ŷe). Since (p̂, ρ̂, ϵ̂) are in natural log (i.e.,

Ŷe, T̂ are not! CP: pero T si esta en log scale!!), some
factors appear when trying to convert from one to the
other, namely

dp̂

dρ̂
=

d log p

d log ρ
=
ρ

p

dp

dρ
→ dp

dρ
=
p

ρ

dp̂

dρ̂
(227)

dp

dϵ
=

p

ϵ

dp̂

dϵ̂
,

dp

dYe
= p

dp̂

dŶe
(228)

The script can be modified easily to allow for more
outputs, although it seems more convenient to have one
reduced file for the con2prim and a more extended one
for the neutrino interaction terms.

� initial data: The file InitialData.h5 is called
in ExternalInitialData to fill the missing in-
formation in the initial data (pressure,internal
energy and electron-fraction, assuming beta-
equilibrium). Then, the inputs are (ρ, T, Ye) in
log geometrized units, while that the outputs are
(c2s, ϵ, p, µe, µp, µn). This table is discarded after
reading the initial data (i.e., not saved during the
full simulation).Notice that it prints the values of
Energyshift and eps min, which are input parame-
ters of the parameter file of MHDUET.

� primitive recovery (con2prim): The file Data.h5
is called in the con2prim routine to calculate the
pressure and the internal energy in the Newton-
Raphson. It also provides the sound speed, neces-
sary for the spectral radius of the HRSC method.
Then, the inputs are (ρ, T, Ye) in log geometrized
units, while that the outputs are (c2s, ϵ, p). This ta-
ble is loaded if the EoS type=1. Notice that sound
speed from the table (ĉ2s) needs to be corrected with
a factor h = 1 + ϵ+ P/ρ such that c2s = ĉ2s/h;

� leakage: The file DataLeakage.h5 is called only
when the neutrinos are activated and need to be
evolved (i.e., 1 or 2 times for RK step). Right now it
contains the fields necessary to calculate the opac-
ities and the optical depth.

Notice that in order to generate the initial data Lorene
needs an ascii table eos table.d with (nB , ρ, p) in phys-
ical units. We can generate this ascii table by using the
EoS and routines provided in stellarcollapse.org. In par-
ticular, Dave modified some of them to include new op-
tions. The most important one is idtable.f90, available at
had/src/nuc eos/Lorene tables. An example of usage
to create such table could be

./idtable -b -g 2.0 -s -T 0.1 HShenEOS rho220 temp180 ye65 version 1.1 20120817.h5

B. Ejecta

In order to characterize the ejecta from these simula-
tions, we have analyzed data in 3D and at certain radius

spheres (r = 100, 200, 300). For the 3D case, we have
computed:

� Histograms of the bound/unbound velocity follow-
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ing two criteria: Bernoulli (for fluid, with hmin =
0.9987) [hut > hmin] and Geodesic (for particles)
[ut > 1.0].

� Histograms of the bound/unbound temperature
(following the same two criteria). As T doesn’t
come out from the simulation, we needed to do an
estimate following Appendix C (arXiv:2202.12901).
The detailed procedure would be:

1. Estimate the cold part of the specific internal
energy ϵcold knowing ai, κi, γi (from APR4)
and ρ (output of the simulation).

2. Obtain the thermal part:

ϵth = ϵ− ϵcold

3. Compute the thermal energy density as:

Eth = ρϵth

4. Knowing that the nucleon number density is
n = ρ/mnuc, we can solve the following equa-
tion employing a Newton-Raphson to obtain
the temperature:

Eth =
3

2
nkBT +

11

4
aT 4

5. Note 1: a is the radiation constant (a =
7.567e− 15 erg/(cm3K4)).
Note 2: For the Newton-Raphson we take as
the initial guess: T = 2

3
Eth

nkB
.

� Compute the period of the ejected mass at each
point of the domain. The detailed procedure would
be:

1. Compute the mass in each cell/point, i.e. m =
DdV .

2. Estimate the energy in each cell (flat approx-
imation) [in geometric units] by

E =
1

2
mv2 − Mm

r

where M is the mass of the system (obtained
from mass.dat).

3. We can compute the semi-major axis by

a =
−Mm

2E

4. Now, we can obtain the period as

P =

√
4π2a3

M

5. As we expect to only have negative values of a
for the unbound matter, we set in these cases
a = 0 to exclude them from the histograms

C. Eikonal

details on how to calculate the optical depth by solving
the eikonal equation
The optical depth is the natural logarithm of the ra-

tio of incident to transmitted radiant power through a
material. Let us consider an incident flux I0ν (depending
on the frequency ν) which crosses a slab of material of
size S and absorption coefficient per unit length κν (or
opacity). The transmitted flux is Iν can be calculated
from the differential equation

dIν = −κνIνds→ (229)

Iν = I0ν exp(−κνS) = I0ν exp(−S/l) = I0ν exp(−τν)

where the optical depth τν = κνS = S/l, where l is
the mean free path, namely the distance at which the
intensity falls over 1/e. The regime τν >>> 1 is called
optically thick, because the mean free path is very small
and the radiation needs many scattering events to get
out of the medium. The regime τν ≤ 1 is called optically
thin because the radiation only scatters once or less to
get out of the medium.

In many occasions we will be interested on what is
the shortest path for the radiation to escape from the
medium where it is bing produced, let us say, the inte-
rior of a star. For spherical stars, a radial path would
be probably the shortest, but in more complicated rem-
nants the minimum path is not so clear. Alternatively,
the shortest distance from any point to the zero distance
curve can be computed by solving the eikonal equation
describing the motion of wave-fronts in optics, namely

|∇τν | = κν (230)

where τν is the optical depth for some species of neutrino
and κν its corresponding opacity.
The usual approach to calculating the optical depth at

a given point is to consider some small number of possible
directions in which to integrate the opacity of the fluid.
In GR1D [6], the assumption of spherical symmetry sim-
plifies the calculation so that there are only ingoing and
outgoing directions. Refs. [16] and [5] integrate the depth
along rays in the coordinate directions, although Ref. [5]
adds certain diagonal rays. The depth at any given point
is then the minimum depth among the considered rays.
Ref. [15] instead argues for rays that match the geome-
try of the problem and they therefore interpolate onto a
spherical grid and considers the minimum depth among
a set of radial rays.

In general, the existent algorithms necessarily involve
global integrations that bring with them complexities
due to multiple resolutions (from the AMR) and patches
(from the domain decomposition). Instead, a more lo-
cal approach that is independent of the particular sym-
metries of the problem is desirable. A simple approach
appears to work quite well. In this scheme, the opti-
cal depth at any given point is simply the sum of the
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depth incurred to get to a neighboring point plus the
minimum depth among its neighbors. One can justify
such an approach by arguing that neutrinos will explore
all pathways out of the star, not just straight paths. This
approach is also iterative since changes elsewhere do not
immediately affect other areas, as would happen with a
global integration. Physically one expects changes at the
surface to take some time to propagate throughout the
star. However, as noted in [6], because the depth de-
pends on the opacity which itself depends on the depth,
one expects to iterate in any case.

The computation of the optical depth appears to be
an example of the eikonal problem. The eikonal equation
takes the form

|∇u(x⃗)|flat =
√
(∂xu)2 + (∂yu)2 + (∂zu)2 = f(x⃗) (231)

for scalar functions u(x) and f(x), and basically gives the
minimal path line integral from the point x⃗ to the zero
level set, which can be located at infinity, namely

u(x⃗) = min

∫ x

−∞
f (⃗l)dl (232)

Our naive algorithm explained above can be expressed
as

Un+1 = min(dUn
i±1,j±1,k±1) + ∆xF (233)

where U ≈ u(x⃗) and F ≈ f(x⃗) at the grid point, being d
the normalized distance from the point xi,j,k to the min-
imum neighbor xi±1,j±1,k±1 (i.e., d takes values among

1,
√
2, or

√
3, depending on whether the point is imme-

diately adjacent, diagonally along a plane parallel to a
coordinate axis, or diagonally along a plane at 45◦ from
a coordinate axis, respectively).

A more formal way of solving the eikonal equation is
by using a first-order scheme to approximate the partial
derivatives it is possible to show that this equation, in
n-dimensions, can be written as

n∑
j=1

(
U − Uj

∆x

)2

= F 2 (234)

where U ≈ u(x⃗) and F ≈ f(x⃗) at the grid point, being
Ui the minimum of the neighboring values of u(x⃗) along
the xi direction. The solution of this quadratic equation
for U is given by

U =
1

n

n∑
j=1

Uj+
1

n

√√√√√ n∑
j=1

Uj

2

− n

 n∑
j=1

U2
j −∆x2 F 2


(235)

If the discriminant in the square root is negative, then a
lower-dimensional update must be performed recurrently,
until that a one-dimensional formula is used. Therefore,
the procedure in n = 3 would be:

� calculate the minimum of the solution at the point,
Ui,j,k, along the x,y,z axis, denoted as

Ux ≡ min(Ui+1,j,k, Ui−1,j,k) (236)

Uy ≡ min(Ui,j+1,k, Ui,j−1,k) (237)

Uz ≡ min(Ui,j,k+1, Ui,j,k−1) . (238)

� calculate the discriminant

D3 = (Ux+Uy+Uz)
2−3(U2

x+U
2
y +U

2
z −∆x2 F 2) (239)

� if D3 ≥ 0, then U = (Ux + Uy + Uz)/3 +
√
D3/3.

� if D3 < 0, one needs to perform an n-1=2 dimen-
sional update for all the planes and choose the min-
imum. For instance, in the plane x− y would be

Dz
2 = (Ux + Uy)

2 − 2(U2
x + U2

y −∆x2 F 2)(240)

if |Ux − Uy| ≤ ∆xF → Uz
2 = (Ux + Uy)/2 +

√
Dx

2/2

if |Ux − Uy| > ∆xF → Uz
2 = min(Ux, Uy) + ∆xF .

This procedure is repeated to calculate Ux
2 , U

y
2 , U

z
2

and then the final value is U = min(Ux
2 , U

y
2 , U

z
2 ).

The generalization to a curved background can be per-
formed easily considering the generalized eikonal equa-
tion

|∇u(x⃗)| =
√
γij(∇iu)(∇ju) = f(x⃗) (241)

which can be solved by assuming a conformally flat met-
ric γij = χηij , namely

|∇u(x⃗)|flat = χ−1/2f(x⃗) = (
√
γ)1/3f(x⃗) (242)

Notice that the same factor can be obtained when com-
puting the minimal distance, by using the line element
ds2 = γijdx

idxj ≈ χ−1dx2.

D. Numerical methods

the numerical schemes that we are using to evolve the
previous equations: method of lines with RK for time
integrator, centered finite-difference for the spacetime,
finite-difference HRSC for the matter with MP5 and Lax-
Friedrichs.
Here we will describe in detail the numerical schemes

available in Simflowny and their implementation into the
SAMRAI infrastructure. We will discuss explicitly the
sub-cycling in time for the Adaptive Mesh Refinement
algorithms, including several useful tests. First we in-
troduce the Method of Lines and the time discretization.
Then we describe the spatial discretization for smooth
and for non-smooth solutions.



21

1. The Method of Lines

The prototype of (first-order in time) evolution equa-
tions systems can be written as

∂tu = L(u) (243)

where u is the set of evolution fields and L(u) is an oper-
ator containing first and second order derivatives of the
fields. We will consider that the system is hyperbolic with
a spectral radius ch(ie, the absolute value of the maxi-
mum eigenvalue). This continuum problem can be trans-
formed to a semidiscrete one by allowing only for discrete
space positions {xi = i∆x, yj = j∆y, zk = k∆z}. At
each point the evolution is given by the ODE

∂tU = L(u) +Qm
d (U) (244)

where Qd is an artificial dissipation operator included to
remove the high frequency modes of the solution along
a particular direction m, which can not be accurately
resolved and achieve stability. The system can be fully
discretized by choosing discrete timesteps tn = n∆t. Ex-
plicit schemes are those for which the future solution
which can be written in terms of the current one, namely

Un+1 = T (Un) (245)

where T (Un) can be a complicated operator depending
on the time integrator, the space discretization and the
dissipation.

The discrete system is stable, consistent and conver-
gent to the continuum solution if locally stable time inte-
grator is employed for the time evolution, like a Runge-
Kutta of at least third order. Notice that the numeri-
cal scheme will be stable as long as the CFL condition
∆t ≤ ∆x/ch is fulfilled.

2. The Runge-Kutta time integrator

A explicit Runge-Kutta scheme, applied to system
(243), takes the form

U (i) = Un +

i−1∑
j=1

bijkj , kj = ∆tL(U (j))

Un+1 = Un +

s∑
i=1

ciki

where U (i) are the auxiliary intermediate values of the
Runge-Kutta with s stages. The matrices B = (bij),
with bij = 0 for j ≥ i are s × s matrices such that the
resulting scheme is explicit and of order p. A Runge-
Kutta is characterized by this matrix and the coefficient
vector ci, which can be represented by a tableau in the
usual Butcher notation ([17])

where the coefficients c̃ used for the treatment of non-
autonomous systems are given by the consistency rela-

tion ai =
∑i−1

j=1 bij . These schemes can be denoted as

a B

cT

RK(s, p), where the doblet (s, p) characterizes the num-
ber of s stages of the explicit scheme and the order p of
the scheme.

One can find Runge-Kuttas of order p = s up to p ≤ 4,
making this choice optimal. A very well known fourth
order Runge-Kutta with an effective CFL of 2 is given in
Table I.

TABLE I. Tableau for a very standard explicit RK(4,4)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 2/6 2/6 1/6

Solutions of conservation equations have some norm
that decreases in time. It would be desirable, in order to
avoid spurious numerical oscillations arising near discon-
tinuities of the solution, to maintain such property at a
discrete level by the numerical method. If Un represents
a vector of solution values at the time t = n ∆t, then a
numerical scheme is said to be strong stability preserv-
ing (SSP) if maintains ∥Un+1∥ ≤ ∥Un∥ for all n ≥ 0 in a
given norm ∥ · ∥.
There are different SSP-RK schemes available in the

literature. A very popular third order one [18], with an
optimal CFL of 1, is given in Table II.

TABLE II. Tableau for the explicit RK-SSP(3,3) scheme

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 4/6

Notice that a dense ouput interpolator can be con-
structed by using the sub-steps of the RK. Its generic
forms is

Un+θ = Un +

s∑
j=1

bj(θ)kj , θ =
t− tn

tn+1 − tn
(246)

where bi(θ) are the coefficients to build the interpolator
for a given RK scheme. Notice that them−derivative can
also be computed from this dense output interpolator

dm

dtm
U(tn + θ∆t) =

1

hm

s∑
j=1

kj
dm

dθm
bj(θ) +O(h4−m) ,

(247)

For the standard RK(4, 4), it can be shown that there
is a unique third order interpolator that can be written
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as

b1(θ) = θ − 3

2
θ2 +

2

3
θ3 , b2(θ) = b3(θ) = θ2 − 2

3
θ3 ,

b4(θ) =
−1

2
θ2 − 2

3
θ3 (248)

For the SSP-RK(3, 3) there is a second order interpo-
lator which also satisfies the SSP condition

b1(θ) = θ − 5

6
θ2 , b2(θ) =

1

6
θ2 , b3(θ) =

4

6
θ2 (249)

3. IMEX

PD-ARS3 [ARS3] (Table III) In this section we
will try a third-order 4-stage IMEX scheme [19]. Note its
explicit tableau is SSPRK3. The Butcher tableau would
be:

TABLE III. Tableau for the explicit (left) implicit (right) PD-
ARS3 scheme

0 0 0 0 0
1 1 0 0 0

1/2 1/4 1/4 0 0
1 1/6 1/6 2/3 0

1/6 1/6 2/3 0

0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0
1 0 1/6 1/6 2/3

0 1/6 1/6 2/3

PD-ARS4 [ARS4] (Table IV)
In this section we will try a fourth-order 4-stage IMEX

scheme. Note its explicit tableau is SSPRK4. The
Butcher tableau would be:

TABLE IV. Tableau for the explicit (left) implicit (right) PD-
ARS4 scheme

0 0 0 0 0 0
1/2 1/2 0 0 0 0
1/2 0 1/2 0 0 0
1 0 0 1 0 0
1 1/6 2/6 2/6 1/6 0

1/6 2/6 2/6 1/6 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
1/2 0 0 1/2 0 0
1 0 0 0 1 0
1 0 1/6 2/6 2/6 1/6

0 1/6 2/6 2/6 1/6

4. Spatial Discretization for smooth solutions

As a default we will use standard fourth-order centered
finite difference. The first order derivative operators have
the form

∂xUi,j,k =
1

12∆x
(Ui−2,j,k − 8Ui−1,j,k

+ 8Ui+1,j,k − Ui+2,j,k) +O(∆x4) (250)

The second order can be constructed as the first order
derivate applied twice on Ui,j,k. This is an acceptable
choice for the cross-derivatives. For the instance, for the
xy-derivative,

∂xyUi,j,k = ∂x (∂yUi,j,k) = ∂y (∂xUi,j,k) (251)

However, the stencil of the second order xx-derivative
is twice larger, so it is preferable to change a different
operator that is still fourth order and keeps the original
stencil

∂xxUi,j,k =
1

12∆x2
(−Ui−2,j,k + 16Ui−1,j,k − 30Ui,j,k

+ 16Ui+1,j,k − Ui+2,j,k) +O(∆x4) (252)

We use centered derivative operators for all the deriva-
tive terms except for the advection terms, which are
generically proportional to a vector βi. In those case,
we will use one-side derivative schemes,

∂xUi,j,k =
1

12∆x
(−Ui−3,j,k + 6Ui−2,j,k − 18Ui−1,j,k

+ 10Ui,j,k + 3Ui+1,j,k) +O(∆x4) , if βx < 0

∂xUi,j,k =
1

12∆x
(Ui+3,j,k − 6Ui+2,j,k + 18Ui+1,j,k

− 10Ui,j,k − 3Ui−1,j,k) +O(∆x4) , if βx > 0

The Dissipation: As it was mentioned before, we use
artificial dissipation to remove the high frequency modes
of the solution which are not truly represented in our
numerical grid (i.e., their wavelength is smaller than the
grid size δx). We will use the Kreiss-Oliger dissipation
operator [20]

Qx
d = σ(−1)r−1∆x2r−1

(
Dx

+

)r (
Dx

−
)r

(253)

where

Dx
+Ui,j,k =

Ui+1,j,k − Ui,j,k

∆x
, (254)

Dx
−Ui,j,k =

Ui,j,k − Ui−1,j,k

∆x
(255)

where σ ≥ 0 is dissipative parameter. If the accuracy
of the scheme without artificial dissipation is q, choosing
2r − 1 ≥ q does not affect the accuracy of the scheme.
For a fourth order scheme we must use r = 3, leading

to an operator for the x-direction

Qx
dUi,j,k = σ(∆x)5

(
Dx

+

)3 (
Dx

−
)3
Ui,j,k (256)

=
σ

64∆x
(Ui−3,j,k − 6Ui−2,j,k + 15Ui−1,j,k

− 20Ui,j,k + 15Ui+1,j,k − 6Ui+2,j,k + Ui+3,j,k)

Extrapolation at the boundaries: the simulation
domain is extended by few ghost zones, which will al-
low us to compute centered derivatives of the fields
and impose Sommerfeld-type boundary conditions. Fill-
ing the points outside the domain region is achieved
by extrapolating the solution from the interior. This
spatial interpolation must be at least as accurate as
the spatial derivative operators in order to prevent the
spoiling of the scheme accuracy. One of the simplest
and most efficient options is to use Lagrange interpo-
lating functions. Given a solution Ui at the position
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xi, one can construct a Lagrangian polynomial func-
tion of order k passing through a k + 1 set of points
{(x1, U1), (x2, U2), ...(xk, Uk), (xk+1, Uk+1)}, namely

p(x) =

k+1∑
j=1

Uj lj(x) , lj(x) =

k+1∏
m=1
m ̸=j

x− xm
xj − xm

(257)

where x is the point position in which the value is interpo-
lated. To construct a symmetric Lagrangian polynomial
of 4th-order, suitable for our 4th-order spatial scheme,
five points are required,

p(x) =
(x− x2)(x− x3)(x− x4)(x− x5)

(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)
U1

+
(x− x1)(x− x3)(x− x4)(x− x5)

(x2 − x1)(x2 − x3)(x2 − x4)(x2 − x5)
U2

+
(x− x1)(x− x2)(x− x4)(x− x5)

(x3 − x1)(x3 − x2)(x3 − x4)(x3 − x5)
U3

+
(x− x1)(x− x2)(x− x3)(x− x5)

(x4 − x1)(x4 − x2)(x4 − x3)(x4 − x5)
U4

+
(x− x1)(x− x2)(x− x3)(x− x4)

(x5 − x1)(x5 − x2)(x5 − x3)(x5 − x4)
U5

5. Spatial Discretization for non-smooth solutions

(Mostly from Ref. [21]). Our system of equations can
be written formally in conservation law form, namely

∂tU+ ∂kFk(U) = S(U) (258)

where U is the list of evolved fields, Fk(U),S(U) their
corresponding fluxes and sources, which might be non-
linear but depend only on the fields and not on their
derivatives.

However, these simple finite difference operators are
not the optimal choice for the spatial discretization of
fluxes in intrinsically non-linear systems like the MHD.
In that case, it is advisable to use High-Resolution-Shock-
Capturing (HRSC) methods [22], to deal with the pos-
sible appearance of shocks and to take advantage of the
existence of weak solutions in the equations.

Our task is now to provide a stable and accurate
non-oscillatory numerical approximation to L(U) =
−∂kFk(U) + S(U). To this purpose, we begin by fo-
cusing our attention to the x-direction and set, for ease
of notations, Fi = F x(Ui,j,k). We then let point values of
the flux Fi correspond to the volume averages of another
function, say F̂ , and define

Fi =
1

∆x

∫ x+1/2

x−1/2

F̂ (ξ)dξ =
1

∆x
[H(xi+1/2)−H(xi−1/2)]

(259)

where

H(x) =

∫ x

−∞
F̂ (ξ)dξ . (260)

In this formalism, point values of the flux Fi are identified
as cell averages of F̂ (x) and H(x) may be regarded as the

primitive function of F̂ . Straightforward differentiation
of Eq. (259) yields the conservative approximation

∂F

∂x
|xi

=
1

∆x
(F̂i+1/2 − F̂i−1/2) (261)

Stated in this form, the problem consists of finding
a high-order approximation to the interface values of
F̂i+1/2 knowing the undivided differences of the prim-
itive function H(x), a procedure entirely analogous to
that used in the context of finite volume methods. Thus
one can set

F̂i+1/2 = R(F[s]) (262)

where R() is a highly accurate reconstruction scheme pro-
viding a stable interface flux value from point-wise values
and the index [s] spans through the interpolation stencil.
The crucial issue in HRSC methods is how to approx-
imately solve the Riemann problem, by reconstructing
the fluxes at the interfaces such that no spurious oscil-
lations appear in the solutions. This calculation can be
performed as follows:
We consider the following combination of the fluxes

and the fields, at each node i:

F±
i =

1

2
(Fi ± λUi) (263)

where λ is the maximum propagation speed of the system
in the neighboring points. Then, from the neighboring
nodes {xi−n, .., xi+1+n}, we reconstruct the fluxes at the
left and right of each interface as

FL
i+1/2 = R({F+}) (264)

FR
i+1/2 = R({F−}) (265)

The number 2(n+1) of such neighbors used in the recon-
struction procedure depends on the order of the method.
Simflowny already incorporates some commonly used re-
constructions, like PPM [23], the Weighted-Essentially-
Non-Oscillatory (WENO) reconstructions [24, 25], and
MP5 [26], as well as other implementations like the
FDOC families [27] which are almost as fast as centered
finite difference schemes at the cost of some bounded
spikes near the shock regions.
We use a flux formula to compute the final flux at each

interface, e.g.:

F̂i+1/2 = FL
i+1/2 + FR

i+1/2 (266)

This reconstruction method does not require the char-
acteristic decomposition of the system of equations (i.e.,
the full spectrum of characteristic velocities).
It is interesting to notice that, at the lowest order re-

construction, FL
i+1/2 = F+

i and FR
i+1/2 = F−

i+1, so that

the flux formula (266) reduces to the popular and robust
Local-Lax-Friedrichs flux [22],

F̂LLF =
1

2
[Fi + Fi+1 − λ(Ui+1 − Ui)] (267)
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where

λ = max(|λi|, |λi+1|) . (268)

For higher order reconstruction the non-linearities pro-
duces some differences and there is no direct corre-
spondence between the finite-volume and finite-difference
HRSC flux-formulas.

E. Linear reconstruction for advection-diffusion
equations

Following Radice, the simplest FV-reconstruction that
is asymptotically preserving in the limit of the diffusion
equation is the piecewise linear

F̂AC
i+1/2 = FHO

i+1/2 −Ai+1/2φi+1/2(F
HO
i+1/2 −FLO

i+1/2) (269)

where

FHO
i+1/2 =

1

2
(Fi + Fi+1) (270)

FLO
i+1/2 =

1

2
(Fi + Fi+1)−

λi+1/2

2
(Ui+1 − Ui)(271)

We can compute Ai+1/2 as the average of the neighboring

points Ai+1/2 = 1
2 [Ai +Ai+1], with

Ai ≈ min

[
1,

1

κi∆x

]
≈ tanh

[
1

κi∆x

]
For the limiter φi+1/2 we choose the Monotonic Centered
(MC) limiter, manely

φi+1/2 = min

[
1, 2

ui − ui−1

ui+1 − ui
, 2
ui+2 − ui+1

ui+1 − ui

]
This method can be translated to FD-reconstruction

by using the above combination

F±
i =

1

2

(
Fi ± λ̄iUi

)
(272)

FL
i+1/2 = F+

i +
1

2
∆+

i (273)

FR
i+1/2 = F−

i+1 −
1

2
∆−

i+1 (274)

∆±
i =MC[F±

i+1 − F±
i , F

±
i − F±

i−1] (275)

where in order to avoid oscillations, these slopes must
be limited. A popular choice, much less dissipative that
the straightforward minmod, is the Monotonized Central
(MC) limiter

MC(a, b) =
1

2
(sgn(a) + sgn(b))min(

1

2
|a+ b|, 2|a|, 2|b|)

(276)
Here there is some ambiguitiy on the limiter choice and
on the value of λ̄i, which can be either

λ̄i = Ai max[λi−2, λi−1, λi, λi+1, λi+2] (277)

λ̄i = max[Ai−2λi−2, Ai−1λi−1, Aiλi, Ai+1λi+1, Ai+2λi+2]

In some cases, there might appear odd-even oscilla-
tions due to a decoupling of consecutive grid points in
the spatial discretization scheme. A necessary and suffi-
cient condition for this problem to appear is that [28]

gi gi−1 < 0 and gi gi+1 < 0 (278)

where gi ≡ ui+1 + ui−1 − 2ui is the concaveness of the
evolved field u at the grid point xi. When the above
conditions are satisfied simultaneously, we set Ai = 1,
which is enough to cure the problem.

For the FV-version of the scheme, we set Ai+1/2 = 1 if
the following conditions are satisfied

(ui−ui−1) (ui+1−ui) < 0 and (ui+1−ui) (ui+2−ui+1) < 0
(279)

F. Monotonic Preserving MP5

Undivided difference will be frequently used and de-
noted with ∆i+1/2 = fi+1−fi. Occasionally, we will also
make use of the Minmod and Median functions defined,
respectively as

Minmod(a, b) =
sgn(a) + sgn(b)

2
min(|a|, |b|)(280)

Median(a, b, c) = a+Minmod(b− a, c− a) (281)

The monotonicity preserving (MP) schemes of Suresh
& Huynh achieve high-order interface reconstruction
by first providing an accurate polynomial interpolation
and then by limiting the resulting value so as to pre-
serve monotonicity near discontinuities and accuracy in
smooth regions. The MP algorithm is better sought on
stencils with five or more points in order to distinguish
between local extrema and a genuine O(1) discontinu-
ities. Here we employ the fifth-order accurate scheme
based on the (unlimited) interface value given by

fi+1/2 =
1

60
(2fi−2−13fi−1+47fi+27fi+1−3fi+2) (281)

based on the five point values fi−2, .., fi+2. Together with
this equation, we also define the monotonicity-preserving
bound

fMP = fi +Minmod(∆i+1/2, α∆i−1/2) (281)

resulting from the median between fi, fi+1 and the left-
sided extrapolated upper limit fUL = fi + α∆i−1/2 .
The parameter α ≥ 2 controls the maximum steepness
of the left sided slope and preserves monotonicity during
a single Runge-Kutta stage, provided the CFL number
satisfies Ca ≤ 1/(1 + α). In practice, setting α = 4 still
allows larger values of Ca to be used. The interface value
given by Eq. III F is not altered when the data is suf-
ficiently smooth or monotone that fi+1/2 lies inside the

interval defined by [fi, f
MP ]. Otherwise limiting takes
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place by bringing the original value back into a new in-
terval I[fmin, fmax] specifically designed to preserve ac-
curacy near smooth extrema and provide monotone pro-
file close to discontinuous data. The final reconstruction
can be written as

R(f[s])) =

{
fi+1/2 if (fi+1/2 − fi)(fi+1/2 − fMP ) < 0,

Median(fmin, fi+1/2, f
max) otherwise

(281)
where

fmin = max[min(fi, fi+1, f
MD),min(fi, f

UL, fLC)],

fmax = min[max(fi, fi+1, f
MD),max(fi, f

UL, fLC)].

These bounds provide accuracy-preserving constraints by
allowing the original interface value fi+1/2 to lie in a

somewhat larger interval than I[fi, fi+1] or I[fi, f
UL].

This is accomplished by considering the intersection
of the two extended intervals I[fi, fi+1, f

MD] and
I[fi, f

UL, fLC ] that leave enough room to accommodate
smooth extrema based on a measure of the local curva-
ture defined by

dM4
i+1/2 = Minmod(4di−di+1, 4di+1−di, di, di+1) , (279)

where di = ∆i+1/2 −∆i−1/2. Using Eq.III F, one defines

the median fMD and the large curvature fLC values as

fMD
i+1/2 =

fi + fi+1

2
− 1

2
dM4
i+1/2 (280)

fLC
i+1/2 = fi +

1

2
∆i−1/2 +

4

3
dM4
i−1/2 (281)

respectively. The curvature measure provided by Eq.III F
is somewhat heuristic and chosen to reduce the amount
of room for local extrema to develop. The reconstruction
illustrated preserves monotonicity and does not degener-
ate to first-order in proximity of smooth extrema.

Finally, the finite-difference HRSC scheme with MP5
reconstruction could be summarized as follows

F±
i =

1

2
(Fi ± λUi) (282)

FL
i+1/2 = RMP5

(
F+
i−2, F

+
i−1, F

+
i , F

+
i+1, F

+
i+2

)
(283)

FR
i+1/2 = RMP5

(
F−
i+3, F

−
i+2, F

−
i+1, F

−
i , F

−
i−1

)
(284)

F̂i+1/2 = FL
i+1/2 + FR

i+1/2 (285)

G. AMR

reminder on parallelization and AMR, in particular the
sub-cycling in time with high-order accuracy and short
ghost zones. Details on the parallelization of the eikonal?
SAMRAI.

The code presented here has been generated by us-
ing Simflowny [29, 30] together with the infrastructure
SAMRAI [31, 32]. Simflowny is an open-source and
user-friendly platform developed by the IAC3 group since

2008 to facilitate the use of HPC infrastructures to non-
specialist scientists. It allows to easily implement scien-
tific dynamical models, by means of a Domain Specific
Language, and a web-based integrated development en-
vironment, which automatically generates efficient par-
allel code for simulation frameworks. Simflowny splits
the physical models and problems from the numerical
techniques. The automatic generation of the simulating
code allows to properly include the parallelization fea-
tures, which in this case rely on the SAMRAI infrastruc-
ture [31]2. SAMRAI is a patch-based structured AMR
developed over more than 15 years by the Center for Ap-
plied Scientific Computing at the Lawrence Livermore
National Laboratory. The latest upgrades on the AMR
algorithms allow to improve the performance and reach a
good scaling on up to 1.5M cores and 2M MPI tasks [32],
at least for some specific problems. The combination of
these two platforms provides a final code with a good
balance of speed, accuracy, scalability, ability to switch
physical models (flexibility), and the capacity to run in
different infrastructures (portability).
One way to use efficiently the computational resources

is increasing the grid resolution only on the localized re-
gions of the simulation domain where the dynamics is
more demanding and higher resolution is required to im-
prove the accuracy of the solution. A mature and well-
established strategy is the AMR, which introduces new
additional grid levels with higher resolution on specific
regions which might change dynamically with the solu-
tion. The AMR algorithm specifies how the solution on
multi-processor and multi-levels is evolved, and in partic-
ular, how the information on the different domain bound-
aries is shared among the multiple processors. In our ap-
proach, a generic AMR algorithm is constructed by using
the basic blocks (i.e., routines and functions) provided by
SAMRAI. The algorithm skeleton for a problem with L
refinement levels, for the specific case of RK integrators
with S sub-steps, could be written as follows:
The algorithm calls refinement criteria to decide

which regions need additional levels with smaller grid
sizes to obtain an accurate solution. Once the solution
is defined in all levels the simulation can start. The
procedure to integrate a time-step is repeated over and
over until reaching the final simulation time. The fields
must be evolved in all grids each timestep, starting from
the coarsest level l = 0 to the finest one l = L. Each
time integration is performed by using a RK with S sub-
steps. Therefore, the intermediate auxiliary states U (i)

and the final one Un+1 must be computed at each level.
The right-hand-side of the evolution equations, which in-
volves spatial derivatives, need to be computed at each
of these sub-steps, by using the discrete spatial opera-
tors described in the previous section. Notice also that

2 See also the website
https://computation.llnl.gov/project/SAMRAI/
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the nearby zones outside the boundary of the fine lev-
els must be filled with points of the same resolution in
order to accurately evolve the solution. This procedure
is called prolongation and it usually involves interpo-
lation from the coarse grid level into the fine one. After
computing each intermediate RK-step the fields need to
be synchronized among the different processors on level l
in order to fill the boundaries of the domains splatted in
each processor with the correct updated data. Similarly,
after finishing all the steps of the RK, we need to inject
the solution of the fine level l into the coarse one l− 1, a
procedure known as restriction. After the values on the
coarse grids have been updated, the information on the
level l−1 must be again synchronized among processors.

H. Refinement criteria, restriction and
prolongation

There are several strategies to decide which regions
need more resolution to be accurately resolved by includ-
ing additional grid levels with higher resolution. These
strategies rely on going through the points of the coars-
est level and evaluating some refinement criteria, such
that an additional level can afterwards be added in the
tagged regions. This process can be repeated in the new
refined levels until some condition is fulfilled, either on
the refinement criteria or on a maximum allowed num-
ber of levels. There are two refinement tagging strategies
provided by SAMRAI integrated in Simflowny.

� Fixed Mesh Refinement (FMR). The user
specifies statically a set of boxes where the refine-
ment is located. Every level allows different boxes
as long as they are nested in coarser level boxes.

� Adaptive Mesh Refinement (AMR). The user
sets a criteria (i.e., a measurement of the error or a
function of the fields surpassing certain threshold)
used to dynamically calculate the cells to be refined.

Notice that fixed and dynamical tagging strategies
(i.e., FMR and AMR) can be combined in the same sim-
ulation. As the simulation evolves, the AMR tagging cri-
teria will likely change, implying that new regions will be
refined and old ones will be disposed of. This re-meshing
procedure is performed periodically.

If a new refinement level is added dynamically dur-
ing the simulation (i.e., or the region of a given level
increases due to the dynamical AMR criteria), the do-
main of that grid increases with respect to the coarser
level. The new grid points on the fine level are set by the
prolongation procedure, interpolating the solution from
the coarse grid into the fine one. This spatial interpola-
tion must be more accurate than the spatial derivative
operators in order to prevent the spoiling of the scheme
accuracy. One of the simplest and most efficient options
is to use Lagrange interpolating functions. Given a solu-
tion Ui at the position xi, one can construct a Lagrangian

polynomial function of order k passing through a k + 1
set of points {(x1, U1), (x2, U2), ...(xk, Uk), (xk+1, Uk+1)},
namely

p(x) =

k+1∑
j=1

Uj lj(x) , lj(x) =

k+1∏
m=1
m̸=j

x− xm
xj − xm

(285)

where x is the point position in which the value is interpo-
lated. To construct a symmetric Lagrangian polynomial
of 5th-order, suitable for our 4th-order spatial scheme, six
points are required (i.e, three at each side of the point
to be interpolated). Such Lagrangian polynomial inter-
polation can be simplified for the centered point x = x0,
namely

p(x0) =
1

256

[
150(Ux−1 + Ux+1)− 25(Ux−2 + Ux+2)

+ 3(Ux−3 + Ux+3)

]
(285)

In structured grids it is common to choose refined grids
such that the points of the coarse grid also exist in the
fine grid (i.e., the ratio between their resolutions is 2p),
so this interpolation is the only one required.
Since we are interested on MHD problems involving

non-smooth solutions, it is relevant to study if this inter-
polation is suitable when shocks and discontinuities are
present in our simulation. Indeed, this simple Lagrange
interpolation has been compared to a WENO interpo-
lation for systems of equations with non-smooth solu-
tions [33]. The comparison indicates that the simple and
efficient Lagrange interpolation, combined with a WENO
finite difference method to discretize the derivatives dur-
ing the evolution, suffices for the domain interface treat-
ment to retain high-order of accuracy and essentially non-
oscillatory properties even for strong shocks [33].
The restriction procedure is complementary to the pro-

longation. In the restriction, on the regions with over-
lapping grids, the data from a fine level is injected into
a coarse one. If the points of the coarse grid also exist
in the fine grid (i.e., like when the ratio between the two
resolutions is 2p), the restriction is quite straightforward
and only implies copying directly data from the fine level
to the coarse one.

I. Sub-cycling in time

A necessary condition for the stability of explicit nu-
merical schemes of hyperbolic systems is that the time
step must satisfy the CFL condition ∆t ≤ λCFL∆x, with
λCFL a factor depending on the dimensionality of the
problem and the specific time integrator. When there
are multi-levels l = 0..L, the solution on each refinement
level can be evolved in a stable way by using the time-step
corresponding to the finest grid resolution ∆xL, ensur-
ing that all the grids satisfy the CFL condition. This
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is however a very inefficient choice, since coarser grids
are evolved with a time-step much smaller than the one
allowed by their local CFL condition.

A common way to avoid such a restriction is by evolv-
ing the solution with sub-cycling in time, meaning that
each grid uses the largest ∆t as set by its local CFL con-
dition. This means that the finer grids must perform two
or more time-steps for each one of the coarse grid. In
this case, it is not clear how to evolve the interior points
of the fine grid at the refinement boundary, since the so-
lution is not evaluated at the same time on the coarser
grid. There have been several well motivated strategies
to fill in this missing information:

� Tappering. The fine grid is extended by a number
of points given by Next = fresNstNRK, for a reso-
lution ratio of fres, stencil points Nst and RK time
sub-steps NRK, on each direction perpendicular to
the refinement boundary. This way, points at the
boundary can be evolved without any intermedi-
ate prolongation [34]. The boundary points at the
end of the time step of the fine grid (i.e., when it
reaches Un+1) are inside the numerical domain of
dependence of the extended initial fine grid. This
algorithm is computationally expensive and it is
difficult to achieve a good scalability because in-
volves extending each refinement grid by a large
number of points in each direction. For instance,
with a 4th-order RK and 4th-order space discretiza-
tion it would be around 16 points on each side of
the fine grid. However, it is very accurate, since
it minimizes boundary reflections at the interfaces
between levels.

� Berger-Oliger algorithm (BO1). The solution
of the coarser grid is evolved first up to n+1. Then,
with the information from {Un+1, Un}, we can in-
terpolate in time to calculate the solution at the
required times of the RK schema of the finer grids.
Spatial interpolation (prolongation) is also required
to fill the points in the positions needed by the spa-
tial discretization scheme. This algorithm is cheap,
fast and efficient, since it requires to interpolate
only in a number of points equal to the stencil of
the spatial discretization scheme. For instance, it
just requires 3 points in the ghost-zone for a 4th-
order centered derivatives with 6th-order dissipa-
tion. The drawback of this simplest original version
is that it is only 1st-order accurate in time.

� Berger-Oliger with dense output interpola-
tor (BO). The original Berger-Oliger algorithm
can be improved by using additional informa-
tion to increase the accuracy of the interpolation
scheme by either (i) including other time-levels
{Un−1, Un−2, ...}, or (ii) including the intermediate
RK solutions U (i). This last option, that we will
consider here, is commonly known as dense output
interpolator, and its implementation for some RK
schemes is discussed in detail in Appendix 5.

� Berger-Oliger without order reduction
(BOR). The first step of the algorithm is similar
to the BO one, using information from all the
sub-steps of the RK (i.e., {Un, U (i), Un+1}) to
build an internal dense output interpolator of
order q = p − 1. However, in the second step this
interpolator is used for computing all the time
derivatives of the fine grid [35, 36]. By using the
standard RK formula with these time derivatives
it is possible to calculate the solution at each RK
sub-step and achieve a final scheme at least order
q in time. This algorithm, which is discussed
thoroughly in Appendix 2, is fast, efficient and
very accurate. Moreover, we have extended the
algorithm to allow arbitrary resolution ratios
between consecutive AMR grids.

The prolongation, restriction and number of executions
depend on whether sub-cycling is active and which op-
tion from the previous ones is being considered. Cur-
rently, there are four available AMR time integrations in
Simflowny: no sub-cycling in time, tappering, standard
BO and BOR. The latter will be our preferred choice.

APPENDIX A. CONVERSION TO PHYSICAL
UNITS

It is customary in general relativity to adopt ge-
ometrized units G = c = 1, such that all quantities, in-
cluding mass (M) and time (T ), have units of length (L).
Vacuum solutions are invariant under changes in this fun-
damental length scale L. A quantity X that scales as
LlMmT t can be converted into geometrized units by mul-
tiplying with the factor ct (G/c2)m. After the conversion
to geometrized units, X scales as Ll+m+t.
Most equations of state break this intrinsic scale-

invariance, and the fundamental length-scale must be
fixed by additional choices. Once the new scale is chosen,
transformations between geometrized and physical units
can be easily made. In the following, we summarize the
basic procedure detailed in [37] to account for the proper
scaling of quantities.

There are two common approaches in the literature
to set this additional length scale. The first one is ob-
tained by fixing a constant physical quantity, e.g., the
solar mass M⊙ = 1, and from it deduce the appropriate

conversion factors. That is, if a quantity X̂ has dimen-
sions of LlMmT t, its dimensionless counterpart, X̄, is
obtained from the following equation:

X̂ =

(
G M⊙

c2

)l+t Mm
⊙
ct

X . (285)

where the constant in the MKS (meter-kg-second) and
the cgs (centimeter-g-second) systems are

G = 6.67× 10−11m3kg−1s−2 = 6.67× 10−8cm3g−1s−2

c = 3.0× 108ms−1 = 3.0× 1010cms−1

M⊙ = 1.989× 1030kg = 1.989× 1033g
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Remember that in the MKS system the magnetic field is
in Teslas and the energy in Jules, while that in the cgs
the magnetic field is in Gauss and the energy in ergs.

There is still the freedom to choose κ, and all di-
mensions are scaled with this parameter. Usually the
choice κ = 100 is preferred because it leads to physical
units which are close to the current observations. For
instance, TOV stars constructed with these parameters
have a maximum stable mass of M̂max = 1.64M⊙ with a

radius of R̂max = 14.11 km.
For a polytropic EoS p = KρΓ with Γ = 1 + 1/n,

the adimensional quantities X̄ are related to the physical
ones through the polytropic constant K, namely

M̄ = K−n/2M , R̄ = K−n/2R ,

T̄ = K−n/2T , Ω̄ = Kn/2Ω , B̄ = Kn/2B .(282)

where the last relation can be obtained easily from the
energy B2R3 =M , the luminosity L =M/T = B2R6Ω4

or from the magnetic pressure. This way, we can convert
easily the values from any K to a different one. For
instance, if the mass of a star with K = 372 and Γ = 2 is
M = 3.15, then M̄ = 372−1/2M = 0.1633. We can again
go back to physical units (withM⊙=1) with an arbitrary
K. A common choice which leads to a masses and sizes
similar to the observed for neutron stars is K = 100, so
that M = 1001/2M̄ = 1.633M⊙.

The second method for choosing the length scale is ex-
plained in detail in [37], and is more involved. It is based
on fixing the maximum stable mass for a family of solu-
tions (with given {κ = 1,Γ}) to a physically motivated

value. Thus, a quantity X̂ with dimensions LlMmT t is

obtained by using the relation:

X̂ = κ̂xcyGzX, (282)

where

x =
l +m+ t

2(Γ− 1)
, y =

(Γ− 2)l + (3Γ− 4)m− t

Γ− 1
,

z = − l + 3m+ t

2
. (282)

In this method κ̂ has dimensions. We now identify the
maximum stable mass for the given polytrope to some
physical maximum mass. Although this second method
for fixing the fundamental length scale generally leads to
different results from the first, it can be checked that for
Γ = 2 both methods (the first one with κ = 100, while the
second one always has κ = 1) provide the same scaling
factors when the physical maximum stable mass is set to
M̂ = 1.64M⊙. Since the dimensionless maximum stable
mass is M = 0.164, Eq. (III I) can be solved for κ̂ with
{l = 0,m = 1, t = 0}, giving κ̂ = 1.456× 105cm5/

(
g s2
)
.

With this value, (III I) can again be used to recover the
dimensions of any quantity.

For the Lorene initial data for a single star (Magstar),
the easiest thing to do is to calculate the corresponding κ̂,
considering that the maximum mass of the non-rotating
star computed with numerically has a massMmax = 3.16
and making it correspond in physical units to Mmax =
1.64M⊙. This way we obtain κ̂ = 390.36cm5/

(
g s2
)
.

Then, we can convert all the unitless quantities to unit
by using (III I), namely

T̂ (l = 0,m = 0, t = 1) ⇒ (x = 1/2, y = −1, z = −1/2) ⇒ T̂ = (2.55× 10−6T )s = (2.55× 10−3T )ms (283)

M̂(l = 0,m = 1, t = 0) ⇒ (x = 1/2, y = 2, z = −3/2) ⇒ M̂ = (1.031× 1030M)kg = (0.519M)M⊙ (284)

L̂(l = 1,m = 0, t = 0) ⇒ (x = 1/2, y = 0, z = −1/2) ⇒ L̂ = (764L)m = (0.764L)km (285)

ρ̂(l = −3,m = 1, t = 0) ⇒ (x = −1, y = 2, z = 0) ⇒ ρ̂ = (2.3× 1021ρ)kgm−3 = (2.3× 1018ρ)g/cm3 (286)

B̂(l = −1/2,m = 1/2, t = −1) ⇒ (x = −1/2, y = 2, z = 0) ⇒ B̂ =
√
8π(4.5× 1019B)G = (2.3× 1020B)G(287)

where we have used that the magnetic field pressure is
B2/(8π) and has units in the cgs system of dyn/cm2 =
g/(cms2).

We could repeat the same calculation for the Lorene
initial data for a binary system with K = pΓ/ρ = 123,
reescale the adimensional maximum mass of the non-
rotating star of mass 0.164 to beMmax = 1.81, and mak-
ing it correspond in physical units to Mmax = 1.64M⊙.

This way we obtain κ̂ = 1191.4cm5/
(
g s2
)
.

Another way of setting the scale is to assume M⊙ = 1,
so the mass is given naturally in solar mass units. We
will follow this convention in general. The maximum
mass for a non-rotating star with K = 123 is M = 1.82
(for the rotating is M = 2.09), which implies that κ̂ =
1465.4cm5/

(
g s2
)
. Then, we can convert all the unitless

quantities to unit by using (III I), namely
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T̂ (l = 0,m = 0, t = 1) ⇒ (x = 1/2, y = −1, z = −1/2) ⇒ T̂ = (4.94× 10−3T )ms (288)

M̂(l = 0,m = 1, t = 0) ⇒ (x = 1/2, y = 2, z = −3/2) ⇒ M̂ =MM⊙ (289)

L̂(l = 1,m = 0, t = 0) ⇒ (x = 1/2, y = 0, z = −1/2) ⇒ L̂ = (1.48L)km (290)

ρ̂(l = −3,m = 1, t = 0) ⇒ (x = −1, y = 2, z = 0) ⇒ ρ̂ = (6.14× 1017ρ)g/cm3 (291)

B̂(l = −1/2,m = 1/2, t = −1) ⇒ (x = −1/2, y = 2, z = 0) ⇒ B̂ = (2.3
√
8π × 1019B)G (292)

Ê(l = 2,m = 1, t = −2) ⇒ (x = 1/2, y = 4, z = −3/2) ⇒ Ê = (1.8× 1054E)erg (293)

where we have used that the energetic units comes from
E =Mc2.
A simple way to estimate the emission of a optically

thick source is by means of the effective temperature Teff
of the corresponding black body, which is defined as

L = 4πR2σT 4
eff , σ = 5.67× 10−5ergs cm−2s−1K−4(294)

where σ is the Stefan-Boltzmann constant and L the to-
tal luminosity of a source of size R. This effective tem-
perature allows to compute the peak frequency of the
black body radiation νpeak(Hz) = 5.88 × 1010T (K). In
order to know if the magnetosphere is really optically
thick we need to know its density and temperature. The
charge density can be estimated roughly from the Julian-
Goldreich one ∇ · (ΩrB). Dividing by the electric charge
of the electron e = 4.8 × 10−10statc and multiplying by
its mass me = 9.1× 10−28g we can calculate the density,

ρJG =
ΩBme

2πc e
[g/cm3] . (295)

For a Ω = 1.5rad/ms and B = 1012G the density is just
1.5× 10−14g/cm3.

APPENDIX B. WENO SCHEMES

1. Third-order WENO

Let us write explicitly the procedure for k = 2, leading
to a 3rd-order WENO reconstruction:

� The reconstructed values LU
(r)
i+1/2 and RU

(r)
i−1/2 of

kth-order accuracy are

LU
(0)
i+1/2 =

1

2
Ui +

1

2
Ui+1

LU
(1)
i+1/2 = −1

2
Ui−1 +

3

2
Ui

RU
(0)
i−1/2 = −1

2
Ui+1 +

3

2
Ui

RU
(1)
i−1/2 =

1

2
Ui +

1

2
Ui−1 (293)

Notice that LU
(r)
i−1/2 and RU

(r)
i+1/2 can be obtained

by substituting i by i ± 1 in the previous expres-
sions.

� We find the smooth indicators Lβ
(r)
i+1/2 and Rβ

(r)
i+1/2

Lβ
(0)
i+1/2 = (Ui+1 − Ui)

2

Lβ
(1)
i+1/2 = (Ui − Ui−1)

2

Rβ
(0)
i−1/2 = (Ui − Ui+1)

2

Rβ
(1)
i−1/2 = (Ui−1 − Ui)

2 (291)

Again, Lβ
(r)
i−1/2 and Rβ

(r)
i+1/2 can be obtained by

substituting i by i± 1 in the previous expressions.

� We find the 3rd-order reconstruction

UL
i+1/2 = ω

(0)
i+1/2

LU
(0)
i+1/2 + ω

(1)
i+1/2

LU
(1)
i+1/2

UR
i−1/2 = ω̃

(0)
i−1/2

RU
(0)
i−1/2 + ω̃

(1)
i−1/2

RU
(1)
i−1/2 (291)

with weights ω
(r)
i+1/2 and ω̃

(r)
i+1/2 constructed by us-

ing the generic formulas

ω
(r)
i+1/2 =

α
(r)
i+1/2∑k−1

s=0 α
(s)
i+1/2

, ω̃
(r)
i−1/2 =

α̃
(r)
i−1/2∑k−1

s=0 α̃
(s)
i−1/2

(292)

where

α
(0)
i+1/2 =

2/3

(ϵ+ Lβ
(0)
i+1/2)

2
, α

(1)
i+1/2 =

1/3

(ϵ+ Lβ
(1)
i+1/2)

2

α̃
(0)
i−1/2 =

1/3

(ϵ+ Rβ
(0)
i−1/2)

2
, α̃

(1)
i−1/2 =

2/3

(ϵ+ Rβ
(1)
i−1/2)

2

and ϵ is usually set to a very small number. The nominal
expected convergence rate is achieved when ϵ = ∆x2.
As it was mentioned before, the reconstructed values

from the other cells can be found by substituting i by
i± 1 in the previous expressions, namely

UL
i−1/2 = ω

(0)
i−1/2

LU
(0)
i−1/2 + ω

(1)
i−1/2

LU
(1)
i−1/2

UR
i+1/2 = ω̃

(0)
i+1/2

RU
(0)
i+1/2 + ω̃

(1)
i+1/2

RU
(1)
i+1/2 (290)

2. Fifth-order WENO

Let us write explicitly the procedure for the 5th-order
WENO, obtained with k = 3.
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� The k reconstructed values LU
(r)
i+1/2 and RU

(r)
i−1/2 of

kth-order accuracy are,

LU
(0)
i+1/2 =

2

6
Ui +

5

6
Ui+1 −

1

6
Ui+2

LU
(1)
i+1/2 = −1

6
Ui−1 +

5

6
Ui +

2

6
Ui+1

LU
(2)
i+1/2 =

2

6
Ui−2 −

7

6
Ui−1 +

11

6
Ui

RU
(0)
i−1/2 =

2

6
Ui+2 −

7

6
Ui+1 +

11

6
Ui

RU
(1)
i−1/2 = −1

6
Ui+1 +

5

6
Ui +

2

6
Ui−1

RU
(2)
i−1/2 =

2

6
Ui +

5

6
Ui−1 −

1

6
Ui−2 (286)

The LU
(r)
i−1/2 and RU

(r)
i+1/2 can be obtained by sub-

stituting i by i± 1 in the previous expressions.

� We find the smooth indicators Lβ
(r)
i+1/2 and Rβ

(r)
i+1/2

Lβ
(0)
i+1/2 =

13

12
(Ui − 2Ui+1 + Ui+2)

2

+
1

4
(3Ui − 4Ui+1 + Ui+2)

2

Lβ
(1)
i+1/2 =

13

12
(Ui−1 − 2Ui + Ui+1)

2

+
1

4
(Ui−1 − Ui+1)

2

Lβ
(2)
i+1/2 =

13

12
(Ui−2 − 2Ui−1 + Ui)

2

+
1

4
(Ui−2 − 4Ui−1 + 3Ui)

2

Rβ
(0)
i−1/2 =

13

12
(Ui+2 − 2Ui+1 + Ui)

2

+
1

4
(Ui+2 − 4Ui+1 + 3Ui)

2

Rβ
(1)
i−1/2 =

13

12
(Ui+1 − 2Ui + Ui−1)

2

+
1

4
(Ui+1 − Ui−1)

2

Rβ
(2)
i−1/2 =

13

12
(Ui − 2Ui−1 + Ui−2)

2

+
1

4
(3Ui − 4Ui−1 + Ui−2)

2 (276)

Again, Lβ
(r)
i−1/2 and Rβ

(r)
i+1/2 can be obtained by

substituting i by i± 1 in the previous expressions.

� We find the 5th-order reconstruction

UL
i+1/2 = ω

(0)
i+1/2

LU
(0)
i+1/2 + ω

(1)
i+1/2

LU
(1)
i+1/2 + ω

(2)
i+1/2

LU
(2)
i+1/2

UR
i−1/2 = ω̃

(0)
i−1/2

RU
(0)
i−1/2 + ω̃

(1)
i−1/2

RU
(1)
i−1/2 + ω̃

(2)
i−1/2

RU
(2)
i−1/2

with weights ω
(r)
i+1/2 and ω̃

(r)
i+1/2 constructed by us-

ing the generic formulas

ω
(r)
i+1/2 =

α
(r)
i+1/2∑k−1

s=0 α
(s)
i+1/2

, ω̃
(r)
i−1/2 =

α̃
(r)
i−1/2∑k−1

s=0 α̃
(s)
i−1/2

(275)

by using

α
(0)
i+1/2 =

3/10

(ϵ+ Lβ
(0)
i+1/2)

2
, α̃

(0)
i−1/2 =

1/10

(ϵ+ Rβ
(0)
i−1/2)

2

α
(1)
i+1/2 =

6/10

(ϵ+ Lβ
(1)
i+1/2)

2
, α̃

(1)
i−1/2 =

6/10

(ϵ+ Rβ
(1)
i−1/2)

2

α
(2)
i+1/2 =

1/10

(ϵ+ Lβ
(2)
i+1/2)

2
, α̃

(2)
i−1/2 =

3/10

(ϵ+ Rβ
(2)
i−1/2)

2

where ϵ is usually set to a very small number.

Notice that we need also the reconstructed values from
the other cells

UL
i−1/2 = ω

(0)
i−1/2

LU
(0)
i−1/2 + ω

(1)
i−1/2

LU
(1)
i−1/2 + ω

(2)
i−1/2

LU
(2)
i−1/2

UR
i+1/2 = ω̃

(0)
i+1/2

RU
(0)
i+1/2 + ω̃

(1)
i+1/2

RU
(1)
i+1/2 + ω̃

(2)
i+1/2

RU
(2)
i+1/2

by substituting i by i± 1 in the previous expressions.
More recently there have been some improvements on

the standard (or JS) WENO. One of them is the so-called
WENO-Z [38], where the weights are changed by using

α
(r)
i+1/2 = dr

(
1 +

[ Lτi+1/2

ϵ+ Lβ
(r)
i+1/2

]q)
,

α̃
(r)
i−1/2 = d̃r

(
1 +

[ Rτi−1/2

ϵ+ Rβ
(r)
i−1/2

]q)
(270)

where q is a coefficient between [1, 2] and with Lτi+1/2 =

|Lβ(0)
i+1/2 −

Lβ
(2)
i+1/2| and

Rτi−1/2 = |Rβ(0)
i−1/2 −

Rβ
(2)
i−1/2|.

The scheme becomes more dissipative when the param-
eter q is increased. WENO-Z is 4th-order near simple
smooth critical points (i.e., where u′j = 0) for q = 1
and attains the designed 5th-order for q = 2, at the
price of being more dissipative. For all these variants
of fifth-order WENOs, the parameter ϵ is usually set to
a very small number and the expected convergence rate
is achieved if ϵ = ∆x4.

APPENDIX C. BERGER-OLIGER WITHOUT
ORDER REDUCTION (BOR)

Let us explain in detail the different steps of the BOR
algorithm [35, 36], which is the most efficient but not
common yet in the area. A direct Taylor expansion of
the solution at t = tn leads to

Un+1 = Un +∆t U ′
n +

1

2
∆t2 U ′′

n +
1

6
∆t3 U ′′′

n +O(∆t4)

(270)
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By performing a similar expansion on the ki of the RK
we obtain

k1 = ∆t U ′
n (271)

k2 = ∆t U ′
n + c2∆t

2 U ′′
n +

1

2
c22∆t

3 [U ′′′
n − fUU

′′
n ]

k3 = ∆t U ′
n + c3∆t

2 U ′′
n

+
1

2
∆t3

c23U ′′′
n −

c23 − 2

3∑
j=1

a3jcj

 fUU
′′
n


k4 = ∆t U ′

n + c4∆t
2 U ′′

n

+ ∆t3

1
2
c24U

′′′
n −

1

2
c24 −

4∑
j=1

a4jcj

 fUU
′′
n


where fU is the Jacobian of f . Notice that one could
solve now the derivatives of U in terms of ki. How-
ever, the equations are not linearly independent and it
is impossible to solve them. Instead, we will compute
the derivatives here from the dense output interpolator
Eqs. ( 5). Once we have these derivatives, we can calcu-
late the ki corresponding to the RK steps of the fine grid,
that is, by doing ∆t → ∆t/2 in Eqs. (271). From there
we can calculate the solution at the different RK sub-
steps required for the evolution of the boundary points
of the fine grid. Next we will describe in detail the im-
plementation for the two commonly-used RK scheme.

3. Standard fourth-order RK

Let us be more explicit and write down the steps for the
standard 4th-order RK for an arbitrary space resolution
ratio R ≡ ∆x/∆xF . First we define the time-step on the
fine grid ∆tF = ∆t/R. Then we start a loop over the
steps on the fine grid, going from r = 0, R− 1 :

1. define tn+r/R ≡ t+ r∆tF and evaluate the solution
Un+r/R(t = tn+r/R) by using the dense output in-
terpolator.

2. compute {U ′
n+r/R, U

′′
n+r/R, U

′′′
n+r/R, fUU

′′
n+r/R}

from the dense output interpolator as a func-
tion of {k1, k2, k3, k4}, that is, at t = tn+r/R or
θ = r/R. The Jacobian can be obtained directly
from the ki of the coarser grid by computing
fUU

′′
n+r/R = 4(k3 − k2)/∆t

3.

3. compute {k1, k2, k3, k4} of the fine grid by using its

time-step ∆tF , namely

k1 = ∆tF U
′
n+r/R (267)

k2 = ∆tF U
′
n+r/R +

1

2
∆t2F U

′′
n+r/R

+
1

8
∆t3F

[
U ′′′
n+r/R − fUU

′′
n+r/R

]
k3 = ∆tF U

′
n+r/R +

1

2
∆t2F U

′′
n+r/R

+
1

8
∆t3F

[
U ′′′
n+r/R + fUU

′′
n+r/R

]
k4 = ∆tF U

′
n+r/R +∆t2F U

′′
n+r/R +

1

2
∆t3FU

′′′
n+r/R

4. use in each sub-step of the first RK step its inter-
mediate value, that for our RK4 is

U (1) = Un+r/R (263)

U (2) = Un+r/R +
1

2
k1

U (3) = Un+r/R +
1

2
k2

U (4) = Un+r/R + k3

Un+ r+1
R = Un+r/R +

1

6
(k1 + 2k2 + 2k3 + k4)

The final RK step finalizes at tn+1.

4. Strong Stability Preserving third-order RK

Let us write down now the procedure for the SSP 3rd-
order RK for an arbitrary ratio R. First we define the
time-step on the fine grid ∆tF = ∆t/R. Then we start
a loop over the steps on the fine grid, going from r =
0, R− 1 :

1. define tn+r/R ≡ t+ r∆tF and evaluate the solution
Un+r/R(t = tn+r/R) by using the dense output in-
terpolator.

2. compute {U ′
n+r/R, U

′′
n+r/R} from the dense output

interpolator as a function of {k1, k2, k3}, that is, at
t = tn+r/R or θ = r/R.

3. compute {k1, k2, k3} of the fine grid by using its
time-step ∆tF , namely

k1 = ∆tF U
′
n+r/R (260)

k2 = ∆tF U
′
n+r/R +∆t2F U

′′
n+r/R

k3 = ∆tF U
′
n+r/R +

1

2
∆t2F U

′′
n+r/R
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4. use in each sub-step of the first RK step its inter-
mediate value, that for our RK3 is

U (1) = Un+r/R (259)

U (2) = Un+r/R + k1

U (3) = Un+r/R +
1

4
k2 +

1

4
k3

Un+ r+1
R = Un+r/R +

1

6
(k1 + 2k2 + 4k3)

The final RK step finalizes at tn+1.

5. Dense output interpolator

Notice that a dense ouput interpolator can be con-
structed by using the sub-steps of the RK [39]. Its generic
form is

Un+θ = Un +

s∑
j=1

bj(θ)kj , θ =
t− tn

tn+1 − tn
(256)

where bi(θ) are the coefficients to build the interpolator
for a given RK scheme. Notice that them−derivative can
also be computed from this dense output interpolator as

dm

dtm
U(tn + θ∆t) =

1

hm

s∑
j=1

kj
dm

dθm
bj(θ) +O(h4−m) ,

(256)
For the standard RK(4, 4), it can be shown that there

is a unique 3rd-order interpolator that can be written as

b1(θ) = θ − 3

2
θ2 +

2

3
θ3 , b2(θ) = b3(θ) = θ2 − 2

3
θ3 ,

b4(θ) =
−1

2
θ2 − 2

3
θ3 (256)

There is a 2nd-order interpolator which also satisfies
the Strong Stability Preserving (SSP) condition for the
SSP-RK(3, 3):

b1(θ) = θ − 5

6
θ2 , b2(θ) =

1

6
θ2 , b3(θ) =

4

6
θ2 (256)

Appendix A: Tabulated EOSs

1. Table format

Our EOS driver accepts tablulated EOS in HDF5 for-
mat. Table V lists the required fields and a short descrip-
tion.

2. Shen EOS

a. Table Construction

Our Shen EOS is constructed on the basis of the Shen
et al. 1998 relativistic-mean field nuclear EOS table.

Electrons (fully general, based on TimmesEOS) and
Photons are added.

Original Shen EOS table extent:
Table extent of current table

[myshen test 220r 180t 50y extT 20090312.h5]:

This bigger table is realized by extending the original
Shen table in multiple ways in multiple directions:

(a) density:
Match of pure ideal gas of Ni56 + electrons/positrons
+ photons at densities below 107g/cm3 – at this den-
sity pressures, energies and entropies match okayish
with the values in the Shen table. The compositions
(Abar,Zbar,Xh,Xa,Xp,Xn) are kept constant in the low-
density region and mu n and mu p are set to 0 – ideally,
at low densities, a full NSE EOS with nuclear reaction
network (at low T ) should be stitched onto the Shen;
working on that, but not yet ready.

(b) temperature (extrapolation):
At high density: linear extrapolation of everything in
T to lower temperatures and higher temperatures. At
low densities (below 107g/cm3), ideal gas of Ni56 + elec-
trons/positrons + photons.

b. Chemical Potentials

The nucleon chemical potentials are fully relativistic
in the Shen EOS. They include the rest mass but are
given with respect to a mass of M = 938 MeV, i.e. µn =
µ̃n −M . Therefore µ̂ = µn − µp includes the neutron-
proton mass difference.

c. Energy Shift

In some regions the negative nuclear binding energy is
larger in magnitude than the thermal/excitation energy.
In this case the specific internal energy (ϵ) becomes neg-
ative. To allow for storage and interpolation of ϵ in log-
arithmic fashion, the energy is shifted up by an energy
shift specified in the variable energy shift. This energy
shift is handled internally in the EOS routines.

3. LS EOSs

a. Chemical Potentials

The nucleon chemical potentials are fully relativistic in
the LS EOSs in the sense that they include the rest mass
of the particles. The chemical potentials are given with
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Variable Units Description

pointsrho dimensionless number of table points in log10(ρ)
pointstemp dimensionless number of table points in log10(T)
pointsye dimensionless number of table points in Ye

logrho log10(ρ[g/cm
3]) index variable ρ

logtemp log10(T [MeV]) index variable T
ye number fraction index variable Ye

Abar A average heavy nucleus mass number
Zbar Z average heavy nucleus atomic number
Xa mass fraction α particle mass fraction
Xh mass fraction average heavy nucleus mass fraction
Xn mass fraction neutron mass fraction
Xp mass fraction proton mass fraction

cs2 cm2/s2 speed of sound squared
dedt erg/g/MeV Cv

dpderho dynes g/cm2/erg dP/dϵ at constant ρ

dpdrhoe dynes cm3/cm2/g dP/dρ at constant ϵ
energy shift erg/g energy shift for table storage a

entropy kB/baryon specific entropy
gamma dimensionless dlog [P ]/dlog [ρ]
logenergy log10(ϵ[erg/g]) specific internal energy

logpress log10(P [dynes/cm2]) pressure

mu e MeV/baryon electron chemical potentialb

mu p MeV/baryon proton chemical potentialc

mu n MeV/baryon neutron chemical potentiald

muhat Mev/baryon mu n - mu p
munu Mev/baryon mu e - muhat

a see below
b includes rest mass
c includes rest mass, see specific EOS for detials
d includes rest mass, see specific EOS for detials

TABLE V. EOS driver HDF5 variables

Density 105.1 - 1015.4 g/cm3

Temperature 0.1 - 100 MeV
Ye 0.01 - 0.56

Density 103 - 1015.36 g/cm3

Temperature 0.01 - 250 MeV
Ye 0.015 - 0.56

respect to the neutron rest mass. Therefore µ̂ = µn − µp

includes the neutron-proton mass difference.

b. Energy Shift

In some regions the negative nuclear binding energy is
larger in magnitude than the thermal/excitation energy.
In this case the specific internal energy (ϵ) becomes neg-
ative. To allow for storage and interpolation of ϵ in log-
arithmic fashion, the energy is shifted up by an energy
shift specified in the variable energy shift. This energy
shift is handled internally in the EOS routines.
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C. Bona-Casas, A. Rigo, M. Bezares, C. Bona, and
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