
Numerical schemes included in Simflowny

Notes written by Carlos Palenzuela
IAC3

(Dated: November 15, 2019)

I. INTRODUCTION

Here we will describe in detail the numerical schemes available in Simflowny and their implementation into the
SAMRAI infrastructure. We will discuss explicitly the sub-cycling in time for the Adaptive Mesh Refinement algo-
rithms, including several useful tests. First we introduce the Method of Lines and the time discretization. Then we
describe the spatial discretization for smooth and for non-smooth solutions.

Finally we introduce the particle based method SPH, its particularities and coupling to mesh based simulations.

II. THE METHOD OF LINES

The prototype of (first-order in time) evolution equations systems can be written as

∂tu = f(u) (1)

where u is the set of evolution fields and f(u) is an operator containing first and second order derivatives of the
fields. We will consider that the system is hyperbolic with a spectral radius ch(ie, the absolute value of the maximum
eigenvalue). This continuum problem can be transformed to a semidiscrete one by allowing only for discrete space
positions {xi = i∆x, yj = j∆y, zk = k∆z}. At each point the evolution is given by the ODE

∂tU = f(U) +Qmd (U) (2)

where Qd is an artificial dissipation operator included to remove the high frequency modes of the solution along a
particular direction m, which can not be accurately resolved and achieve stability. The system can be fully discretized
by choosing discrete timesteps tn = n∆t. Explicit schemes are those for which the future solution which can be
written in terms of the current one, namely

Un+1 = L(Un) (3)

where L(Un) can be a complicated operator depending on the time integrator, the space discretization and the
dissipation.

The discrete system is stable, consistent and convergent to the continuum solution if locally stable time integrator
is employed for the time evolution, like a Runge-Kutta of at least third order. Notice that the numerical scheme will
be stable as long as the CFL condition ∆t ≤ ∆x/ch is fulfilled.

A. The Runge-Kutta time integrator

A explicit Runge-Kutta scheme, applied to system (1), takes the form

U (i) = Un +

i−1∑
j=1

bijkj , kj = ∆tf(U (j))

Un+1 = Un +

s∑
i=1

ciki

where U (i) are the auxiliary intermediate values of the Runge-Kutta with s stages. The matrices B = (bij), with
bij = 0 for j ≥ i are s × s matrices such that the resulting scheme is explicit and of order p. A Runge-Kutta is
characterized by this matrix and the coefficient vector ci, which can be represented by a tableau in the usual Butcher
notation ([1])

2

a B

cT

where the coefficients c̃ used for the treatment of non-autonomous systems are given by the consistency relation

ai =
∑i−1
j=1 bij . These schemes can be denoted as RK(s, p), where the doblet (s, p) characterizes the number of s

stages of the explicit scheme and the order p of the scheme.
One can find Runge-Kuttas of order p = s up to p ≤ 4, making this choice optimal. A very well known fourth order

Runge-Kutta with an effective CFL of 2 is given in Table I.

TABLE I: Tableau for a very standard explicit RK(4,4)

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 2/6 2/6 1/6

Solutions of conservation equations have some norm that decreases in time. It would be desirable, in order to avoid
spurious numerical oscillations arising near discontinuities of the solution, to maintain such property at a discrete
level by the numerical method. If Un represents a vector of solution values at the time t = n ∆t, then a numerical
scheme is said to be strong stability preserving (SSP) if maintains ‖Un+1‖ ≤ ‖Un‖ for all n ≥ 0 in a given norm ‖ · ‖.

There are different SSP-RK schemes available in the literature. A very popular third order one [2], with an optimal
CFL of 1, is given in Table II.

TABLE II: Tableau for the explicit RK-SSP(3,3) scheme

0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 4/6

Notice that a dense ouput interpolator can be constructed by using the sub-steps of the RK. Its generic forms is

Un+θ = Un +

s∑
j=1

bj(θ)kj , θ =
t− tn

tn+1 − tn
(4)

where bi(θ) are the coefficients to build the interpolator for a given RK scheme. Notice that the m−derivative can
also be computed from this dense output interpolator

dm

dtm
U(tn + θ∆t) =

1

hm

s∑
j=1

kj
dm

dθm
bj(θ) +O(h4−m) , (5)

For the standard RK(4, 4), it can be shown that there is a unique third order interpolator that can be written as

b1(θ) = θ − 3

2
θ2 +

2

3
θ3 , b2(θ) = b3(θ) = θ2 − 2

3
θ3 , b4(θ) =

−1

2
θ2 − 2

3
θ3 (6)

For the SSP-RK(3, 3) there is a second order interpolator which also satisfies the SSP condition

b1(θ) = θ − 5

6
θ2 , b2(θ) =

1

6
θ2 , b3(θ) =

4

6
θ2 (7)

III. SPATIAL DISCRETIZATION FOR SMOOTH SOLUTIONS

As a default we will use standard fourth-order centered finite difference. The first order derivative operators have
the form

∂xUi,j,k =
1

12∆x
(Ui−2,j,k − 8Ui−1,j,k + 8Ui+1,j,k − Ui+2,j,k) +O(∆x4) (8)

3

The second order can be constructed as the first order derivate applied twice on Ui,j,k. This is an acceptable choice
for the cross-derivatives. For the instance, for the xy-derivative,

∂xyUi,j,k = ∂x (∂yUi,j,k) = ∂y (∂xUi,j,k) (9)

However, the stencil of the second order xx-derivative is twice larger, so it is preferable to change a different operator
that is still fourth order and keeps the original stencil

∂xxUi,j,k =
1

12∆x2
(−Ui−2,j,k + 16Ui−1,j,k − 30Ui,j,k + 16Ui+1,j,k − Ui+2,j,k) +O(∆x4) (10)

We use centered derivative operators for all the derivative terms except for the advection terms, which are generically
proportional to a vector βi. In those case, we will use one-side derivative schemes,

∂xUi,j,k =
1

12∆x
(−Ui−3,j,k + 6Ui−2,j,k − 18Ui−1,j,k + 10Ui,j,k + 3Ui+1,j,k) +O(∆x4) , βx < 0 (11)

∂xUi,j,k =
1

12∆x
(Ui+3,j,k − 6Ui+2,j,k + 18Ui+1,j,k − 10Ui,j,k − 3Ui−1,j,k) +O(∆x4) , βx > 0 (12)

Since numerical schemes for fluids are usually only third order in space, we can also consider only third order space
discretizations to decrease the stencil of the scheme. This can be done for the advection terms by using the following
operators

∂xUi,j,k =
1

6∆x
(Ui−2,j,k − 6Ui−1,j,k + 3Ui,j,k + 2Ui+1,j,k) +O(∆x3) , βx < 0 (13)

∂xUi,j,k =
1

6∆x
(−Ui+2,j,k + 6Ui+1,j,k − 3Ui,j,k − 2Ui−1,j,k) +O(∆x3) , βx > 0 (14)

A. The Dissipation

As it was mentioned before, we use artificial dissipation to remove the high frequency modes of the solution which
are not truly represented in our numerical grid (i.e., their wavelength is smaller than the grid size δx). We will use
the Kreiss-Oliger dissipation operator [3]

Qxd = σ(−1)r−1∆x2r−1
(
Dx

+

)r (
Dx
−
)r

(15)

where

Dx
+Ui,j,k =

Ui+1,j,k − Ui,j,k
∆x

, Dx
−Ui,j,k =

Ui,j,k − Ui−1,j,k

∆x
(16)

where σ ≥ 0 is dissipative parameter. If the accuracy of the scheme without artificial dissipation is q, choosing
2r − 1 ≥ q does not affect the accuracy of the scheme.

For a fourth order scheme we must use r = 3, leading to an operator for the x-direction

QxdUi,j,k = σ(∆x)5
(
Dx

+

)3 (
Dx
−
)3
Ui,j,k

=
σ

64∆x
(Ui−3,j,k − 6Ui−2,j,k + 15Ui−1,j,k − 20Ui,j,k + 15Ui+1,j,k − 6Ui+2,j,k + Ui+3,j,k) +O(∆x5)(17)

For a third order scheme we can use r = 2, leading to an operator for the x-direction

QxdUi,j,k = −σ(∆x)3
(
Dx

+

)2 (
Dx
−
)2
Ui,j,k

= − σ

16∆x
(Ui−2,j,k − 4Ui−1,j,k + 6Ui,j,k − 4Ui+1,j,k + Ui+2,j,k) +O(∆x3) (18)

IV. METHODS FOR FLUIDS

However, these simple finite difference operators are not the optimal choice for the spatial discretization of fluxes in
intrinsically non-linear systems like the eMHD. In that case, it is advisable to use High-Resolution-Shock-Capturing
(HRSC) methods [?], to deal with the possible appearance of shocks and to take advantage of the existence of weak

4

solutions in the equations. We will therefore use a conservative scheme to discretize the fluxes, which in one dimension
reads:

∂tUi = − 1

∆x

(
Fxi+1/2 − Fxi−1/2

)
where Fxi±1/2 are the set of fluxes along the x-direction evaluated at the interfaces between two neighbouring cells,

located at xi±1/2. The crucial issue in HRSC methods is how to approximately solve the Riemann problem, by
reconstructing the fluxes at the interfaces such that no spurious oscillations appear in the solutions. This calculation
consists in two steps:

FIG. 1: The computational uniform grid xi. The left (L) and right (R) states reconstructed at the interfaces xi±1/2 are required
to evolve the solution Ui.

• We consider the following combination of the fluxes and the fields, at each node i:

F±i =
1

2
(Fi ± λUi) (19)

where λ is the maximum propagation speed of the system in the neighboring points. Then, we reconstruct the
flux at the left (right) of each interface, e.g. FLi+1/2 (FRi+1/2), using the values {F+} ({F−}) from the neighboring

nodes {xi−n, .., xi+1+n}. The number 2(n+ 1) of such neighbors used in the reconstruction procedure depends
on the order of the method. Simflowny already incorporates some commonly used reconstructions, like PPM [?]
and MP5 [?], as well as other implementations like the FDOC families [?] which are almost as fast as centered
finite difference schemes at the cost of some bounded spikes near the shock regions. Here we mostly focused
on the Weighted-Essentially-Non-Oscillatory (WENO) reconstructions [? ?], which is our preferred choice for
their flexibility (i.e., they can achieve any order of accuracy) and robustness. The detailed implementation of
the WENO flavors used here can be found in [?].

• We use a flux formula to compute the final flux at each interface, e.g.:

Fi+1/2 = FLi+1/2 + FRi+1/2 (20)

Note that our reconstruction method does not require the characteristic decomposition of the system of equations
(i.e., the full spectrum of characteristic velocities). At the lowest order reconstruction FLi+1/2 = F+

i and FRi+1/2 =

F−i+1, so that the flux formula (28) reduces to the popular and robust Local-Lax-Friedrichs flux [?]. The LLF
flux formulat can be summarized as follows: once we have reconstructed the fields at a given interface from the
left (L) and from the right (R) we can use all that information to construct the HLL flux

FHLL =
1

SR − SL
[
SRFL − SLFR + SRSL(UR − UL)

]
(21)

where FL = F (UL),FR = F (UR) and SL, SR are the fastest speed traveling to the left and to the right,
respectively, namely

SL = (−)λL , SR = (+)λR , (22)

A more restrictive choice would be

SL = min((−)λL, (−)λR) , SR = max((+)λL, (+)λR) . (23)

The simplest choice assumes that SL = −SR = S. Substituting this expression into the HLL flux one can obtain
the Local-Lax-Friedrichs flux (or Rusanov)

FLLF =
1

2

[
FL + FR − S(UR − UL)

]
(24)

5

The reconstruction procedure can be performed at different orders. We have implemented several of the most
commonly used reconstructions, like PPM [4] and MP5 [5], and other implementations like the FDOC families [6]
which are almost as fast as centered Finite Difference at the cost of some bounded oscillations near the shock region.
Here we present a short summary of the Weighted-Essentially-Non-Oscillatory (WENO) reconstructions [7, 8], which
is our preferred choice for their flexibility (i.e., they can achieve any order of accuracy) and robustness. The detailed
implementation of the WENO flavors used here can be found in Appendices ?? and ??, while that details of the other
methods can be found in a recent review [9].

There is another decomposition that allow us to recover the HLL flux formula[10]. We consider the following
combination of the fluxes and the fields, at each node i:

F+
i =

+λ(+)

λ(+) − λ(−)

(
Fi − λ(−)Ui

)
(25)

F−i =
−λ(−)

λ(+) − λ(−)

(
Fi − λ(+)Ui

)
(26)

where λ(±) are the maximum propagation speed of the system moving to the right/left in the neighboring points,
namely

λ(−) = min(λ
(−)
i , 0) , λ(+) = max(λ

(+)
i , 0) (27)

Then, we reconstruct the flux at the left (right) of each interface, e.g. FLi+1/2 (FRi+1/2), using the values {F+} ({F−})
from the neighboring nodes {xi−n, .., xi+1+n}. The number 2(n + 1) of such neighbors used in the reconstruction
procedure depends on the order of the method. Finally, we use a flux formula to compute the final flux at each
interface, e.g.:

Fi+1/2 = FLi+1/2 + FRi+1/2 (28)

A. Linear reconstruction

The simplest reconstruction is the piecewise linear, where the field in the cell i can be approximated as

ui,j(x̃, ỹ) = ūi,j + ∆xūi,j x̃+ ∆yūi,j ỹ (29)

where {x̃ = (x− xi)/∆x, ỹ = (y − yj)/∆y} and with {∆xūi,j ,∆xūi,j} representing the linear variation of ūi,j within
the cell, namely

∆xūi,j = Limiter

(
ūi+1,j − ūi,j , ūi,j − ūi−1,j

)
(30)

∆yūi,j = Limiter

(
ūi,j+1 − ūi,j , ūi,j − ūi,j−1

)
(31)

In order to avoid oscillations, these slopes must be limited. The safest choice is probably the minmod limiter

minmod(a, b) =
1

2
(sgn(a) + sgn(b))min(|a|, |b|) (32)

Another popular choice, much less dissipative, is the Monotonized Central (MC) limiter

MC(a, b) =
1

2
(sgn(a) + sgn(b))min(

1

2
|a+ b|, 2|a|, 2|b|) (33)

B. Parabolic reconstruction

The next order of reconstruction is the piecewise parabolic method (PPM), where the field in the cell i can be
approximated as

ui(x̃) = ūi + ûxx̃+ ûxx(x̃− 1/12) (34)

The procedure is at follows:

6

• construct the limited slopes in each zone

∆ui+1 = MC

(
ūi+2 − ūi+1, ūi+1 − ūi

)
(35)

∆ui = MC

(
ūi+1 − ūi, ūi − ūi−1

)
(36)

• calculate uLi+1/2 and uRi+1/2 in that cell by using

uLi+1/2 =
1

2
(ūi+1 + ūi)−

1

6
(∆ui+1 −∆ui) (37)

and uRi+1/2 = uLi+1/2.

• enforce the monotonicity conditions resetting uRi−1/2 and uLi+1/2 in each zone as follows

if (uLi+1/2 − ūi)(ūi − u
R
i−1/2) ≤ 0 → uLi+1/2 = ūi and uRi−1/2 = ūi (38)

if (uLi+1/2 − u
R
i−1/2)

(
ūi −

1

2
(uLi+1/2 + uRi−1/2)

)
>

1

6
(uLi+1/2 − u

R
i−1/2)2 → uRi−1/2 = 3ūi − 2uLi+1/2 (39)

if
−1

6
(uLi+1/2 − u

R
i−1/2)2 > (uLi+1/2 − u

R
i−1/2)

(
ūi −

1

2
(uLi+1/2 + uRi−1/2)

)
→ uLi+1/2 = 3ūi − 2uRi−1/2 (40)

Notice that a less restrictive condition can substitute the first one, namely

if (uLi+1/2 − ūi)(ūi − u
R
i−1/2) ≤ 0 → uLi+1/2 = ūi + ∆ui/2 and uRi−1/2 = ūi −∆ui/2 (41)

C. WENO schemes

FIG. 2: WENO notation.

Given the cell averages ui of a function u(x), for each cell Ii, we obtain upwind biased (2k1)-th order approximations
to the function u(x) at the cell boundaries, denoted by Rui−1/2 and Lui+1/2, in the following way:

• Obtain the k reconstructed values Lu
(r)
i+1/2 and Ru

(r)
i−1/2 of k-th order accuracy,

Lu
(r)
i+1/2 =

k−1∑
j=0

cr,jui−r+j

Ru
(r)
i−1/2 =

k−1∑
j=0

cr−1,jui−r+j (42)

with r = 0..k − 1.

• Find the smooth indicators Lβ
(r)
i+1/2 and Rβ

(r)
i+1/2,that will depend on the order k

7

• Find the (2k − 1)th order reconstruction

uLi+1/2 =

k−1∑
r=0

ω
(r)
i+1/2

Lu
(r)
i+1/2

uRi−1/2 =

k−1∑
r=0

ω̃
(r)
i−1/2

Ru
(r)
i−1/2 (43)

with r = 0..k − 1. The weights, ω
(r)
i+1/2 for the left and ω̃

(r)
i+1/2 for the right, can be constructed in the following

way

ω
(r)
i+1/2 =

α
(r)
i+1/2∑k−1

s=0 α
(s)
i+1/2

, α
(r)
i+1/2 =

dr

(ε+ Lβ
(r)
i+1/2)2

ω̃
(r)
i−1/2 =

α̃
(r)
i−1/2∑k−1

s=0 α̃
(s)
i−1/2

, α̃
(r)
i−1/2 =

d̃r

(ε+ Rβ
(r)
i−1/2)2

(44)

where d̃r = dk−1−r and ε is a very small number of the order 10−10.

The coefficients cr,j for the k = 2 and k = 3 can be found in the tables.

TABLE III: Table for k = 2

r j=0 j=1

-1 3/2 -1/2

0 1/2 1/2

1 -1/2 3/2

TABLE IV: Table for k = 3

r j=0 j=1 j=2

-1 11/6 -7/6 1/3

0 1/3 5/6 -1/6

1 -1/6 5/6 1/3

2 1/3 -7/6 11/6

while that the coefficients dr are

k = 2 d0 = 2/3 , d1 = 1/3 (45)

k = 3 d0 = 3/10 , d1 = 6/10 , d2 = 1/10 (46)

1. Third order WENO (k=2)

Let us write explicitly the procedure for the third order WENO, obtained with k = 2.

• The k reconstructed values Lu
(r)
i+1/2 and Ru

(r)
i−1/2 of k-th order accuracy,

Lu
(0)
i+1/2 =

1

2
ui +

1

2
ui+1 ≡ A(1)(ui, ui+1)

Lu
(1)
i+1/2 = −1

2
ui−1 +

3

2
ui ≡ A(0)(ui−1, ui)

Ru
(0)
i−1/2 = −1

2
ui+1 +

3

2
ui ≡ A(0)(ui+1, ui)

Ru
(1)
i−1/2 =

1

2
ui +

1

2
ui−1 ≡ A(1)(ui, ui−1) (47)

The Lu
(r)
i−1/2 and Ru

(r)
i+1/2 can be obtained by substituting i by i± 1 in the previous expressions.

8

• Find the smooth indicators Lβ
(r)
i+1/2 and Rβ

(r)
i+1/2

First option is when the smooth indicator is the same along all the cell Lβ
(r)
i+1/2 =R β

(r)
i−1/2

Lβ
(0)
i+1/2 = (ui+1 − ui)2 = B(1)(ui+1, ui) (48)

Lβ
(1)
i+1/2 = (ui − ui−1)2 = B(0)(ui, ui−1)

Rβ
(0)
i−1/2 = (ui − ui+1)2 = B(0)(ui, ui+1) == B(0)(ui+1, ui) (49)

Rβ
(1)
i−1/2 = (ui−1 − ui)2 = B(1)(ui−1, ui) = B(0)(ui, ui−1) (50)

Second option is when the smooth indicator is mirrored Lβ
(0)
i+1/2 =R β

(1)
i−1/2 and Lβ

(1)
i+1/2 =R β

(2)
i−1/2, switching

± by ∓,

Lβ
(0)
i+1/2 = (ui+1 − ui)2 = B(1)(ui+1, ui) (51)

Lβ
(1)
i+1/2 = (ui − ui−1)2 = B(0)(ui, ui−1)

Rβ
(0)
i−1/2 = (ui − ui+1)2 = B(0)(ui−1, ui) (52)

Rβ
(1)
i−1/2 = (ui−1 − ui)2 = B(1)(ui, ui+1) (53)

Again, Lβ
(r)
i−1/2 and Rβ

(r)
i+1/2 can be obtained by substituting i by i± 1 in the previous expressions.

• Find the 3rd order reconstruction

uLi+1/2 = ω
(0)
i+1/2

Lu
(0)
i+1/2 + ω

(1)
i+1/2

Lu
(1)
i+1/2

uRi−1/2 = ω̃
(0)
i−1/2

Ru
(0)
i−1/2 + ω̃

(1)
i−1/2

Ru
(1)
i−1/2 (54)

with weights ω
(r)
i+1/2 and ω̃

(r)
i+1/2 constructed by using the generic formulas

ω
(r)
i+1/2 =

α
(r)
i+1/2∑k−1

s=0 α
(s)
i+1/2

, ω̃
(r)
i−1/2 =

α̃
(r)
i−1/2∑k−1

s=0 α̃
(s)
i−1/2

(55)

by using

α
(0)
i+1/2 =

2/3

(ε+ Lβ
(0)
i+1/2)2

, α
(1)
i+1/2 =

1/3

(ε+ Lβ
(1)
i+1/2)2

α̃
(0)
i−1/2 =

1/3

(ε+ Rβ
(0)
i−1/2)2

, α̃
(1)
i−1/2 =

2/3

(ε+ Rβ
(1)
i−1/2)2

(56)

Notice that we need also the reconstructed values from the other cells

uLi−1/2 = ω
(0)
i−1/2

Lu
(0)
i−1/2 + ω

(1)
i−1/2

Lu
(1)
i−1/2

uRi+1/2 = ω̃
(0)
i+1/2

Ru
(0)
i+1/2 + ω̃

(1)
i+1/2

Ru
(1)
i+1/2 (57)

by substituting i by i± 1 in the previous expressions.

Lately there have been some proposals by Carpenter(2009) to change the weights by using

α
(r)
i+1/2 = dr

(
1 +

τ

ε+ Lβ
(r)
i+1/2

)
, α̃

(r)
i−1/2 = d̃r

(
1 +

τ

ε+ Rβ
(r)
i−1/2

)
(58)

with τ = (ui+1−2ui+ui−1)2. Another choice leads to the WENO3-P, which seems quite well behaved τ = |β
(0)+β(1)

2 −
1
4 (ui−1 − ui+1)2| = 3

12 (ui+1 − 2ui + ui−1)2.

9

2. Fifth order WENO (k=3)

Let us write explicitly the procedure for the fifth order WENO, obtained with k = 3.

• The three reconstructed values Lu
(r)
i+1/2 and Ru

(r)
i−1/2 of 3rd order accuracy,

Lu
(0)
i+1/2 =

2

6
ui +

5

6
ui+1 −

1

6
ui+2 ≡ A(0)(ui, ui+1, ui+2)

Lu
(1)
i+1/2 = −1

6
ui−1 +

5

6
ui +

2

6
ui+1 ≡ A(1)(ui−1, ui, ui+1)

Lu
(2)
i+1/2 =

2

6
ui−2 −

7

6
ui−1 +

11

6
ui ≡ A(2)(ui−2, ui−1, ui)

Ru
(0)
i−1/2 =

2

6
ui+2 −

7

6
ui+1 +

11

6
ui ≡ A(2)(ui+2, ui+1, ui)

Ru
(1)
i−1/2 = −1

6
ui+1 +

5

6
ui +

2

6
ui−1 ≡ A(1)(ui+1, ui, ui−1)

Ru
(2)
i−1/2 =

2

6
ui +

5

6
ui−1 −

1

6
ui−2 ≡ A(0)(ui, ui−1, ui−2) (59)

The Lu
(r)
i−1/2 and Ru

(r)
i+1/2 can be obtained by substituting i by i± 1 in the previous expressions.

• Find the smooth indicators Lβ
(r)
i+1/2 and Rβ

(r)
i+1/2

Lβ
(0)
i+1/2 =

13

12
(ui − 2ui+1 + ui+2)2 +

1

4
(3ui − 4ui+1 + ui+2)2 ≡ B(0)(ui, ui+1, ui+2)

Lβ
(1)
i+1/2 =

13

12
(ui−1 − 2ui + ui+1)2 +

1

4
(ui−1 − ui+1)2 ≡ B(1)(ui−1, ui, ui+1)

Lβ
(2)
i+1/2 =

13

12
(ui−2 − 2ui−1 + ui)

2 +
1

4
(ui−2 − 4ui−1 + 3ui)

2 ≡ B(2)(ui−2, ui−1, ui)

Rβ
(0)
i−1/2 =

13

12
(ui+2 − 2ui+1 + ui)

2 +
1

4
(ui+2 − 4ui+1 + 3ui)

2 ≡ B(2)(ui+2, ui+1, ui)

Rβ
(1)
i−1/2 =

13

12
(ui+1 − 2ui + ui−1)2 +

1

4
(ui+1 − ui−1)2 ≡ B(1)(ui+1, ui, ui−1)

Rβ
(2)
i−1/2 =

13

12
(ui − 2ui−1 + ui−2)2 +

1

4
(3ui − 4ui−1 + ui−2)2 ≡ B(0)(ui, ui−1, ui−2) (60)

Again, Lβ
(r)
i−1/2 and Rβ

(r)
i+1/2 can be obtained by substituting i by i± 1 in the previous expressions.

• Find the 5th order reconstruction

uLi+1/2 = ω
(0)
i+1/2

Lu
(0)
i+1/2 + ω

(1)
i+1/2

Lu
(1)
i+1/2 + ω

(2)
i+1/2

Lu
(2)
i+1/2

uRi−1/2 = ω̃
(0)
i−1/2

Ru
(0)
i−1/2 + ω̃

(1)
i−1/2

Ru
(1)
i−1/2 + ω̃

(2)
i−1/2

Ru
(2)
i−1/2 (61)

with weights ω
(r)
i+1/2 and ω̃

(r)
i+1/2 constructed by using the generic formulas

ω
(r)
i+1/2 =

α
(r)
i+1/2∑k−1

s=0 α
(s)
i+1/2

, ω̃
(r)
i−1/2 =

α̃
(r)
i−1/2∑k−1

s=0 α̃
(s)
i−1/2

(62)

by using

α
(0)
i+1/2 =

3/10

(ε+ Lβ
(0)
i+1/2)2

, α
(1)
i+1/2 =

6/10

(ε+ Lβ
(1)
i+1/2)2

, α
(2)
i+1/2 =

1/10

(ε+ Lβ
(2)
i+1/2)2

α̃
(0)
i−1/2 =

1/10

(ε+ Rβ
(0)
i−1/2)2

, α̃
(1)
i−1/2 =

6/10

(ε+ Rβ
(1)
i−1/2)2

, α̃
(2)
i−1/2 =

3/10

(ε+ Rβ
(2)
i−1/2)2

(63)

10

where ε is usually set to a very small number such that the expected convergence rate is achieved when ε = ∆x2.
Notice that we need also the reconstructed values from the other cells

uLi−1/2 = ω
(0)
i−1/2

Lu
(0)
i−1/2 + ω

(1)
i−1/2

Lu
(1)
i−1/2 + ω

(2)
i−1/2

Lu
(2)
i−1/2

uRi+1/2 = ω̃
(0)
i+1/2

Ru
(0)
i+1/2 + ω̃

(1)
i+1/2

Ru
(1)
i+1/2 + ω̃

(2)
i+1/2

Ru
(2)
i+1/2 (64)

by substituting i by i± 1 in the previous expressions.

Lately there have been some proposals of a WENO-Z where the weights are changed by using

α
(r)
i+1/2 = dr

(
1 +

[Lτi+1/2

ε+ Lβ
(r)
i+1/2

]q)
, α̃

(r)
i−1/2 = d̃r

(
1 +

[Rτi−1/2

ε+ Rβ
(r)
i−1/2

]q)
(65)

where q = 1, 2 and with Lτi+1/2 = |Lβ(0)
i+1/2−

Lβ
(2)
i+1/2| and Rτi−1/2 = |Rβ(0)

i−1/2−
Rβ

(2)
i−1/2|. The scheme becomes more

dissipative when the parameter q is increased. WENO-Z is 4th-order near simple smooth critical points (i.e., where
u′j = 0) for q = 1 and attains the designed 5th-order for q = 2, at the price of being more dissipative. The parameter

ε is usually set to a very small number and the expected convergence rate is achieved if ε = ∆x4.
An additional improvement was achieved along this lines with teh WENO-Z+ (Acker 2006 an improved WENOZ

scheme)

α
(r)
i+1/2 = dr

(
1 +

[
ε+ Lτi+1/2

ε+ Lβ
(r)
i+1/2+

]q
+ λ

[
ε+ Lβ

(r)
i+1/2

ε+ Lτi+1/2

])
, (66)

α̃
(r)
i−1/2 = d̃r

(
1 +

[
ε+ Rτi−1/2

ε+ Rβ
(r)
i−1/2

]q
+ λ

[
ε+ Rβ

(r)
i−1/2

ε+ Rτi−1/2

])
(67)

where q = 1, 2 and λ = ∆x2/3. It is recommended to set ε = 10−40 < ∆x4 to avoid spurious oscillations. For the
same reason, it is preferred the more dissipative choice q = 2.

V. PARTICLES METHODS AND SPH

A. Basics of particle methods

Particle methods is an interpolation method that allow us to write down any field as a function of its values
computed in any finite set of arbitrary points (i.e., the particles). Generically, any field A(r) can be interpolated by
using the integral formula

< A(r) >=

∫
A(r′)W (r− r′, h)dr′ , (68)

where the integration is performed in all the space coordinates and W is the interpolation kernel, which must satisfy
two basic conditions, ∫

W (r− r′, h)dr′ = 1 , lim
h→0

W (r− r′, h) = δ(r− r′) . (69)

Therefore, the interpolation formula Eq. (68) is approximated by the following summation over the neighboring
particles:

< A(r) >=
∑
b

∆VbA(rb)W (r− rb, h), (70)

where summation goes over all the particles b, which have a position rb, velocity vb and an associated volume ∆Vb.
One of the main advantages of particle methods is that we can built a differentiable interpolation of any field

by using its values on the particles and a differentiable analytical kernel. Consequently, derivatives of the field can

11

be obtained without using finite differences on a grid. For instance, in order to compute ∇A, we can just derivate
Eq. (68), namely

< ∇A(r) >=
∑
b

∆VbA(rb)∇W (r− rb, h). (71)

The previous expressions can be used to compute the field and its gradient at the a, namely

< Aa > =
∑
b

∆VbAbWab, (72)

< ∇Aa > =
∑
b

∆VbAb∇aWab (73)

where we have simplified the notation by defining Ab ≡ A(rb) and Wab ≡ W (ra − rb, h). If the kernel is radially
symmetric, then W (ra − rb, h) = W (rb − ra, h) = W (|rb − ra|, h), that is, Wab = Wba.

B. Different first order derivative operators

One can use different relations to write down

∇A =
1

Φ
(∇(ΦA)−A∇Φ) , (74)

∇A = Φ

[
A

Φ2
∇(Φ) +∇

(
A

Φ

)]
, (75)

being Φ any differentiable function. The particle approximation of these derivatives would be

< ∇Aa > =
∑
b

∆Vb
Φb
Φa

(Ab −Aa)∇aWab (76)

< ∇Aa > =
∑
b

∆Vb

[
Φa
Φb
Ab +

Φb
Φa

Aa

]
∇aWab (77)

Typical choices are Φ = 1 and Φ = ρ.

C. Normalization issues

Let us restrict this discussion to the one-dimensional case. As it was discussed before, any field A(r) can be
evaluated at the position r = ra by using the neighboring particles at located at rb, conveniently weighted with a
Kernel Wab ≡ W (ra − rb, h) that depends on the smoothing length h and their separation. Notice however that the
Kernel must be normalized, and that even then this produces inconsistencies near the boundaries. One way to prevent
this problem is by a suitable normalization of the particle formulas. For instance, the averaged value of the function
can be normalized as:

< Aa >=

∑N
b=1 ∆VbAbWab∑N
b=1 ∆VbWab

(78)

where the volume ∆Vb associated to each particle. If the density is an evolved field, the associated volume can be
estimated as ∆Vb = mb/ρb, where mb is the particle mass and ρb its density.

The first derivative can be estimated in a similar way,

< ∇A(r) >=

∑N
b=1 ∆Vb [Ab −A(r)]∇W (|r− rb|)∑N
b=1 ∆Vb [rb − r]∇W (|r− rb|)

(79)

which satisfies that it is zero for a constant field and constant for a linear one. For instance, the x-component would
be

< ∂xA >a=

∑N
b=1 ∆Vb [Ab −Aa] (xb − xa)/rab W

′(q)∑N
b=1 ∆VbW ′(q) rab/D

(80)

12

We can use a symmetric operator for the first derivative, such that it can also be estimated as,

< ∇A(r) >=

∑N
b=1 ∆Vb [Ab +A(r)]∇W (|r− rb|)∑N
b=1 ∆Vb [rb − r]∇W (|r− rb|)

(81)

which satisfies that it is zero for a constant field and constant for a linear one. For instance, the x-component would
be

< ∂xA >a=

∑N
b=1 ∆Vb [Ab +Aa] (xb − xa)/rab W

′(q)∑N
b=1 ∆VbW ′(q) rab/D

(82)

It is more convenient to write the argument of the Kernel in term of the dimensionless variable q ≡ |r−rb|/h = rab/h.
This introduces no changes on the calculation of < f(r) >, just changing W (|r − rb|) → W (q)/hD because of the
later normalization. For the derivative it just add a sign,

∂xW (q) =
∂W (q)

∂q

∂q

∂rab

∂rab
∂x

= W ′(q)
1

h

(x− xb)
rab

(83)

This means that the normalization factor can be written as

[rb − r]∇W (|r− rb|) = [rb − r]
∇W (q)

h
= (rb − r)

(r− rb)

rab

W ′(q)

h
= −W

′(q)

h
rab

Second derivative are more tricky and difficult to compute in the general case. However, one can found a simplified
formula for the Laplacian operator

< ∇2A >a=

∑N
b=1 ∆Vb [Ab −Aa]W ′(q)/rab∑N
b=1 ∆VbW ′(q) rab/(2 D)

(84)

The implementation of specific second derivatives is not as straightforward, but one can use an approximated formula
which reduces to the Laplacian in the right limit

< ∇A(r) >=

∑N
b=1 ∆Vb [Ab −A(r)]

[
4(rb − r)/|r− rb|2 − δ

]
∇W (|r− rb|)∑N

b=1 ∆Vb [rb − r]∇W (|r− rb|)
(85)

so that the explicit expressions would be

< ∂xxA >a =

∑N
b=1 ∆Vb [Ab −Aa]W ′(q)/rab

[
4(xb − xa)2/r2

ab − 1
]∑N

b=1 ∆VbW ′(q) rab/D
(86)

< ∂yyA >a =

∑N
b=1 ∆Vb [Ab −Aa]W ′(q)/rab

[
4(yb − ya)2/r2

ab − 1
]∑N

b=1 ∆VbW ′(q) rab/D
(87)

< ∂xyA >a =

∑N
b=1 ∆Vb [Ab −Aa]W ′(q)/rab

[
4(xb − xa)(yb − ya)/r2

ab

]∑N
b=1 ∆VbW ′(q) rab/D

For the 3D case one should only change the factor 4 to a factor 5 in the expressions above, namely[
4(xb − xa)(yb − ya)

r2
ab

]
→
[

5(xb − xa)(yb − ya)

r2
ab

]
(88)

D. Time derivatives

Particle methods is included in the semi-Lagrangian type, in the sense that time derivatives Dt are performed by
following the particles instead of the Eulerian fixed-position time derivative ∂t, but not for the spatial derivatives.
Therefore, we need to convert the standard Eulerian time derivative into a Lagrangian one, namely ∂t → Dt − vk∂k.
Let us consider a generic equation for the field A, namely

∂tA = L(A, ∂A) (89)

13

where L is the rhs operator which can involve fields and their derivatives. Therefore, this equation translates into

DtA− vk∂kA = L(A, ∂A) (90)

For generic systems one should evaluate these terms separately at the position of the particle i, since each one has a
different normalization, namely

DtAi− < vk >i< ∂kA >i=< L(A, ∂A) >i (91)

where < vk >i can be computed in different ways. For instance, you could use the interpolation value with the Kernel.
Generically, it will be just the particle velocity vki = dxki /dt.

However, this equations can be simplified if the density and velocity are evolved fields. The mass-conservation can
be written as

∂tρ+∇ · (ρv) = 0→ Dtρ+ ρ∂i(v
i) = 0 (92)

which can be easily discretized as

Dρa
Dt

+ ρa
∑
b

mb

ρb
(vb − va) · ∇aWab = 0 . (93)

that has the additional advantage that is divergence free when the speed is constant.
By using the continuity equation one can rearrange the advection terms by considering the specific field Â ≡ A/ρ.

Expanding the derivative and using the continuity equation, one can easily show that

∂tÂ+ vj∂jÂ = DtÂ =
1

ρ

[
L+ ∂k

(
ρÂvk

)]
. (94)

which can be discretized as

DtÂa =
1

ρa
< La > +

1

ρa

∑
b

mb

ρb

(
ρbÂbvb − ρaÂava

)
∇aWab . (95)

Using the same notation as before, the field Â and the derivative of the flux ρÂvk would be discretized with the
following normalized expressions

< Âi >=

∑N
j=1 ÂjW (xi − xj)∆Vj∑N
j=1W (xi − xj)∆Vj

(96)

where ∆Vj = mj/ρj , and

< ∂x

(
ρÂvk

)
>i=

∑N
j=1[ρjÂjv

k
j − ρiÂivki]∂xiW (xi − xj)∆Vj∑N

j=1[xj − xi]∂xiW (xi − xj)∆Vj
. (97)

If the original equations can be written as a system of balance law then these equations can be further simplified
by merging all the fluxes. Since it is really very problem dependent, we will not discuss in more detail those options.

E. Particle trajectory correction

XSPH is a variant, proposed by Monaghan (1994), corrects particle velocity assuring more ordered flow and prevents
penetration between continua when high speed or impact occur:

dxa
dt

= va + ε
∑
b

mb

ρab
(vb − va)Wab (98)

where ρab ≡ (ρa + ρb)/2.

14

F. Particle-mesh interaction

In particle and mesh simulations, it is posible to transfer information between fields held in particles and fields in
cells. Currently, linear lagrangian interpolation method is implemented to interpolate fields from mesh into a particle,
and kernel based interpolation is implemented to interpolate from particles in a cell.

VI. THE AMR ALGORITHM

The AMR algorithm is constructed by using basic blocks (i.e.,routines and functions) provided by SAMRAI.

A. The algorithm

There are two refinement tagging strategies provided by SAMRAI integrated in Simflowny:

• Fixed Mesh Refinement (FMR). The user specifies statically a set of boxes where the refinement is located.
Every level allows different boxes as long as they are nested in coarsen level boxes.

• Adaptive Mesh Refinement (AMR). The user sets a criteria used to calculate dynamically the cells to be
refined. There are two criteria currently implemented by Simflowny:

– Gradient. Checked on a field, when its gradient surpass certain value, the cell must be tagged for
refinement.

– Function. For a certain field (which can be a function) when its value surpass certain threshold the cell
is refined.

Notice that both kind of tagging strategies can be combined in the same simulation.
As the simulation evolves, the AMR tagging criteria may have changed, needing new refinement areas or disposing

older ones. This re-meshing procedure is periodically run and is parameterizable for every simulation.
If a new refinement box is added when the simulation has already started, the number of cells inside the box are

increased respecting the coarser level and need to have a value, which is interpolated from the coarser level. That
process is called prolongation and is further explained in the next subsection.

The algorithm skeleton is as follows:

initialization
refinement tagging
while not simulation end do

for all Level l do
for all Runge Kutta step do

calculate rhs (derivatives + dissipation)
integrate time
if last Runge Kutta step then

restrict from l to l-1
level synchronization(l - 1)

end if
level synchronization(l)
prolong from l-1 to l (prepare ghost zones)
calculate physical boundaries

end for
if has to regrid(l) then

refinement tagging(l)
end if

end for
end while

The restriction procedure is straightforward, it consists on copying the data from fine levels to coarser ones for the
overlapping cells.

The previous algorithm is similar for every level. However, prolongation, restriction and number of executions
depend whether subcycling is active. Currently, there are three available time integrations in Simflowny, without
subcycling, tappering or Berger-Oliger.

15

Figures 3 and 4 show the behaviour of synchronization and steps for a simulation without subcycling. Every level
advance the same value of ∆t. The main advantage is that prolongation is straightforward, that is because time at
every substep is the same for all levels. The main disadvantage is the value of ∆t, which must fit to Courant constraint
in the finest level. Therefore, coarser levels run slower than they could.

FIG. 3: Synchronization between two levels without subcycling using a Runge-Kutta with three substeps. (Prolongation in
red, restriction in green)

FIG. 4: Time diagram for synchronization between three levels without subcycling. Each segment represents a complete step.
(Prolongation in red, restriction in green)

When using subcycling time integration with tappering, each level in the hierarchy run the longer ∆t it can. In
the other hand, the sublevels must repeat the substep to reach parent ∆t. Additionally, the tappering algorithm
artificially increases the number of ghost nodes to reduce the number of synchronizations in substeps. In Figure 6,
there is only one prolongation at the beginning of the first step in the finer level. Nevertheless, this prolongation is
expensive due to the extra ghost zone.

Figure 7 shows the intercalation of level steps in a three level simulation over time. Notice the variable length of
each step in different levels.

A scheme of the different steps (i.e., prolongation, restriction and time-integration) is shown in Figure 5 for the
different sub-cycling options. In the case without sub-cycling, each level advance the same value of ∆t. Prolongation
is then straightforward, mainly because time at every sub-step is the same for all levels. As we mentioned before,
the main disadvantage of this approach is that the value of ∆t must fit the CFL constraint in the finest level.
Consequently, coarse levels run slower than they could. This drawback is not present when there is sub-cycling in
the time integration. With the tappering strategy, each level in the hierarchy run the longest ∆t allowed by the CFL

16

condition. As it is typical for this approach, the children levels need to perform at least two time-steps to reach their
parent ∆t. The main drawback of the tappering algorithm is that, in order to avoid prolongations from the coarse
grid during the RK sub-steps, it artificially increases the number of grids on the ghost zones. In Figure 5 there is only
one prolongation at the beginning of the first step in the finer level and one restriction at the very end. Nevertheless,
this prolongation is expensive due to the extra ghost zone.

Finally, the last option is Berger-Oliger time integration, either the standard one or the new one ÅWhen we first
introduced it we did not mention it was new, and here is mentioned as if known. Shouldn’t we say explicitly we
have developed a new BO variation? without order reduction. This case is more complex, since it requires a larger
number of prolongations steps, as it is shown in Figure 5. Due to the time misalignment on the RK sub-steps, a
time interpolation must be performed in the coarser level, which might lead to a reduction of the accuracy if it is
not performed carefully. Despite those disadvantages, this method is faster and more efficient than tappering due to
the smaller ghost zones. More details about our preferred choice, the Berger-Oliger without order reduction, can be
found in the Appendix.

FIG. 5: Synchronization between two levels with no sub-cycling (left), tappering (middle) and Berger-Oliger (right), using a
Runge-Kutta with three substeps. Prolongation between levels is denoted with red arrows, while that restriction is denoted
with green ones.

FIG. 6: Synchronization between two levels with tappering subcycling using a Runge-Kutta with three substeps. (Prolongation
in red, restriction in green)

Finally, the last option is Berger-Oliger time integration. This case requires more complex and more number of
prolongations as shows in Figure 8. Due to the misalignment of substep variables between levels, a time interpolation
must be performed in the coarser level. Despite those disadvantages, this method is faster than tappering due to the
smaller ghost zone.

Berger-Oliger time diagram (Figure 9) is similar to Tappering, but needing mode prolongation synchronizations.

B. The prolongation

The prolongation consists on filling points outside the refinement region with the same fine resolution, by inter-
polating from the coarse grid. To avoid spoiling the accuracy of the spatial discretization we will usually use higher
order interpolation. The simplest option is to use a Lagrange interpolator function. Given a point defined by its

17

FIG. 7: Time diagram for synchronization between three levels with tappering subcycling.(Prolongation in red, restriction in
green)

FIG. 8: Synchronization between two levels with Berger-Oliger subcycling using a Runge-Kutta with three substeps. (Prolon-
gation in red, restriction in green)

position xi and its value yi, we can construct a Lagrangian polynomial function of order k passing through a k + 1
set of points {(x1, y1), (x2, y2), ...(xk, yk), (xk+1, yk+1)}, namely

p(x) =

k+1∑
j=1

yj lj(x) , lj(x) =

k+1∏
m=1
m 6=j

x− xm
xj − xm

(99)

where x is the point position in which the value is interpolated.
To construct a Lagrangian polynomial of fifth order six points are required, three at each side of the point to

interpolate. The classical Lagrangian polynomial interpolation for six points is as follows:

18

FIG. 9: Time diagram for synchronization between three levels with Berger-Oliger subcycling.(Prolongation in red, restriction
in green)

((x− x2) ∗ (x− x3) ∗ (x− x4) ∗ (x− x5) ∗ (x− x6))/((x1 − x2) ∗ (x1 − x3) ∗ (x1 − x4) ∗ (x1 − x5) ∗ (x1 − x6)) ∗ y1(100)

+((x− x1) ∗ (x− x3) ∗ (x− x4) ∗ (x− x5) ∗ (x− x6))/((x2 − x1) ∗ (x2 − x3) ∗ (x2 − x4) ∗ (x2 − x5) ∗ (x2 − x6)) ∗ y2(101)

+((x− x1) ∗ (x− x2) ∗ (x− x4) ∗ (x− x5) ∗ (x− x6))/((x3 − x1) ∗ (x3 − x2) ∗ (x3 − x4) ∗ (x3 − x5) ∗ (x3 − x6)) ∗ y3(102)

+((x− x1) ∗ (x− x2) ∗ (x− x3) ∗ (x− x5) ∗ (x− x6))/((x4 − x1) ∗ (x4 − x2) ∗ (x4 − x3) ∗ (x4 − x5) ∗ (x4 − x6)) ∗ y4(103)

+((x− x1) ∗ (x− x2) ∗ (x− x3) ∗ (x− x4) ∗ (x− x6))/((x5 − x1) ∗ (x5 − x2) ∗ (x5 − x3) ∗ (x5 − x4) ∗ (x5 − x6)) ∗ y5(104)

+((x− x1) ∗ (x− x2) ∗ (x− x3) ∗ (x− x4) ∗ (x− x5))/((x6 − x1) ∗ (x6 − x2) ∗ (x6 − x3) ∗ (x6 − x4) ∗ (x6 − x5)) ∗ y6(105)

(106)

For the case of interpolation on AMR, there are a set of characteristics that are constant and may simplify the
calculation.

• The point to interpolate is always between x3 and x4.

• The distance between xi points is constant (δx).

• The distance from point x to x3 is directly related to the refinement ratio and its position in the new divided
cell. x3 = x− δx/R ∗ P

The interpolation operator is simplified by the previous premises.

(1.0/120) ∗ (

(6 ∗R4 ∗ P − 5 ∗R3 ∗ P 2 − 5 ∗R2 ∗ P 3 + 5 ∗R ∗ P 4 − P 5) ∗ yx−3

+ (−60 ∗R4 ∗ P + 80 ∗R3 ∗ P 2 − 5 ∗R2 ∗ P 3 − 20 ∗R ∗ P 4 + 5 ∗ P 5) ∗ yx−2

+ (120 ∗R5 − 40 ∗R4 ∗ P − 150 ∗R3 ∗ P 2 + 50 ∗R2 ∗ P 3 + 30 ∗R ∗ P 4 − 10 ∗ P 5) ∗ yx−1

+ (120 ∗R4 ∗ P + 80 ∗R3 ∗ P 2 − 70 ∗R2 ∗ P 3 − 20 ∗R ∗ P 4 + 10 ∗ P 5) ∗ yx+1

+ (−30 ∗R4 ∗ P − 5 ∗R3 ∗ P 2 + 35 ∗R2 ∗ P 3 + 5 ∗R ∗ P 4 − 5 ∗ P 5) ∗ yx+2

+ (4 ∗R4 ∗ P − 5 ∗R2 ∗ P 3 + P 5) ∗ yx+3

)/(R5)) (107)

where R is the refinement ratio, P is the position of the node to refine respecting immediate-left coarser node. In
Figures 10 and 11 there are two examples of interpolation for ratios 2 and 3. The value of P varies depending on the
position of y to be interpolated.

The standard choice is R = 2 and P = 1, so that the interpolator can be further reduce to

p(x) =
1

256
∗ [150(yx−1 + yx+1)− 25(yx−2 + yx+2) + 3(yx−3 + yx+3))] (108)

19

FIG. 10: Interpolation with ratio 2.

FIG. 11: Interpolation with ratio 3.

C. The subciclying in time

Regions with different resolutions can be evolved stably by using the smallest ∆t (corresponding to the finest grid
resolution ∆xl), such that all the grids satisfy the CFL condition. However, this is an expensive choice, since then
the coarser grids are evolved with ∆t much smaller than the ones allowed by their local CFL condition.

Let us consider a uniform unidimensional mesh of n points which takes N × Q operations to step ∆t by using a
Runge-Kutta of order q. Assume also that there is 2:1 FMR hierarchy with L levels of refinement. Therefore, to
advance all the grid points to t + ∆t by using the same ∆t for all the levels (i.e., which will be given by the CFL
condition in the finest grid), will require a number of operations

Q×
(
N + 2×N + 4×N...+ 2L−1 ×N

)
≈ Q× 2L ×N → Q× 2L ×Nd (109)

where we have generalized the result to d-dimensions.
The number of operations can be reduced significantly by using the same CFL in all the grids to advance the

solution, such that ∆tl−1 = 2∆tl. Therefore, the minimum number of operations to advance all the grid points will
be

Q× (N +N + ...+N) = Q× L×N → Q× L×Nd (110)

which is much smaller than the above estimation.
If we do not evolve all the grids with the same ∆t it is not clear how to evolve the interior points (i.e., from the fine

grid) at each refinement boundary, since the solution is not evaluated at the same time on the coarser grid. There
have been several well motivated attempts to fill in this missing information

• Berger-Oliger interpolator (BO). The solution of the coarser grid is evolved first up to n + 1. Then, with the
information from {Un+1, Un, ..}, we can interpolate in time to calculate the solution at the required times of the
Runge-Kutta of the finer grid. Spatial interpolation is also required to fill the points in the positions needed by
the spatial discretization scheme. This algorithm is cheap, fast and efficient, since it requires to interpolate only
in a number of points equal to the stencil of the spatial discretization scheme. The total number of operations
is then

Q× L× (N + 2S)→ Q× L× (N + 2S)
d

(111)

where S is the stencil of the spatial discretization and the factor 2 comes from the two refinement boundaries
present in 1D. Usually S = 3 for fourth order centered derivatives with sixth-order dissipation. However, the
original version is second order and it actually reduces to first order for very high resolution, as we will discuss
later, due to the order reduction problem.

• Tappering (T). The fine grid is extended by a number of points 2Q × S on each direction perpendicular to
the refinement boundary. This way, the boundary point at the second final substep of the fine grid (i.e., when
it reaches Un+1) is inside the numerical domain of dependence of the extended initial grid. This algorithm is

20

algorithm d = 1 d = 2 d = 3

No subcycling 1.02× 105 1.02× 107 1.02× 109

minimum 3.2× 103 3.2× 105 3.2× 107

BO/BOR 3.4× 103 3.7× 105 4.0× 107

Tappering 8.3× 103 2.1× 106 5.6× 108

BO + T 5.0× 103 1.0× 106 1.9× 108

TABLE V: Number of operations for a fourth order RK Q = 4 with a fourth order accurate spatial derivative S = 4 with a
grid base of N = 100 in each direction and L = 8 levels of refinement.

expensive because it involves extending each refinement grid by a large number of points in each direction (i.e.,
for instance, with a 4th order RK and 4th order space discretization it would be around 16 points on each side of
the fine grid). However, it is very accurate, since it leads to an evolution without many effects from the change
of grid resolutions. The total number of operations would be in this case

L × [(N + 2Q× 2S) + (N + 2(Q− 1)× 2S) + ...+ (N + 4S)]

≈ Q×N × L+ 4L× S ×Q× (Q+ 1)/2

≈ Q× L× [N + 2S ×Q× (Q+ 1)]→ Q× L× [N + 2S ×Q× (Q+ 1)]
d

(112)

• Tappering + Berger-Oliger (BOT) . The fine grid is extended by a number of points stencil s − RKstages,
such that the boundary point at the first final substep of the fine grid (i.e., when it reaches Un+1/2) is inside
the numerical domain of dependence of the extended initial grid. Then it uses the values of the coarse grid at
Un, Un+1, ... to interpolate in time and repopulate again stencil s − RKstages points to be evolved again as
the first RK step. This algorithm is less expensive than the full tapering, but its accuracy is restricted by the
time interpolation at n+ 1/2.

Q× L× [N + S ×Q× (Q+ 1)]→ Q× L× [N + S ×Q× (Q+ 1)]
d

(113)

• Berger-Oliger without order reduction (BOR). The solution of the coarser grid is evolved first up to n + 1.
Then, with the information from the substeps of the RK we can build an internal dense output interpolator
{Un, U (i), Un+1} of order q = p − 1 and compute all the ki of the fine grid. Using the standard RK formula
with these ki will cancel the error terms to lead to a final scheme of at least order q in time, and for some RK
it might even reach p. This algorithm is cheap, fast, efficient and accurate, and it will be our preferred choice.

Q× L× (N + 2S)
d

(114)

Notice that one can use the dense output for the interpolation required in all the variants of Berger-Oliger algorithm
(i.e, BO, BOT and BOR).

Let us explain in detail the different steps of the BOR algorithm, which is the most efficient and the less known in
the field. A direct Taylor expansion of the solution at t = tn leads to

Un+1 = Un + ∆t U ′n +
1

2
∆t2 U ′′n +

1

6
∆t3 U ′′′n +O(∆t4) (115)

By performing a similar expansion on the ki of the RK we obtain

k1 = ∆t U ′n (116)

k2 = ∆t U ′n + c2∆t2 U ′′n +
1

2
c22∆t3 [U ′′′n − fUU ′′n] +O(∆t4) (117)

k3 = ∆t U ′n + c3∆t2 U ′′n +
1

2
∆t3

c23U ′′′n −
c23 − 2

3∑
j=1

a3jcj

 fUU
′′
n

+O(∆t4) (118)

k4 = ∆t U ′n + c4∆t2 U ′′n + ∆t3

1

2
c24U

′′′
n −

1

2
c24 −

4∑
j=1

a4jcj

 fUU
′′
n

+O(∆t4) (119)

21

where fU is the Jacobian of f . Notice that one could solve now the derivatives of U in terms of ki. However, the
equations are not linearly independent and it is impossible to solve them. Instead, we will compute the derivatives
here from the dense output interpolator 5. Once we have these derivatives, we can calculate the ki corresponding to
the RK steps of the fine grid, that is, by doing ∆t → ∆t/2 in eqs(116). From there we can calculate the solution at
the different RK sub-steps required for the evolution of the boundary points of the fine grid.

1. RK4 with ratio 2

Let us be more explicit and write down the steps for the standard fourth order RK:

1. we start the fist RK step of the fine grid by computing {U ′n, U ′′n , U ′′′n , fUU ′′n} from the dense output interpolator
as a function of {k1, k2, k3, k4}, that is, at t = tn or θ = 0. The Jacobian can be obtained directly from the ki
of the coarser grid by computing fUU

′′
n = 4(k3 − k2)/∆t3.

2. compute {k1, k2, k3, k4} of the fine grid by using ∆tF = ∆t/2. For this RK(4, 4)

k1 = ∆tF U
′
n (120)

k2 = ∆tF U
′
n +

1

2
∆t2F U

′′
n +

1

8
∆t3F [U ′′′n − fUU ′′n] (121)

k3 = ∆tF U
′
n +

1

2
∆t2F U

′′
n +

1

8
∆t3F [U ′′′n + fUU

′′
n] (122)

k4 = ∆tF U
′
n + ∆t2F U

′′
n +

1

2
∆t3FU

′′′
n (123)

3. use in each sub-step of the first RK step its intermediate value, that for our RK4 is

U (1) = Un (124)

U (2) = Un +
1

2
k1 (125)

U (3) = Un +
1

2
k2 (126)

U (4) = Un + k3 (127)

Un+1 = Un +
1

6
(k1 + 2k2 + 2k3 + k4) (128)

4. we start the second RK step of the fine grid by computing {U ′n+1/2, U
′′
n+1/2, U

′′′
n+1/2, fUU

′′
n+1/2} from the dense

output interpolator as a function of {k1, k2, k3, k4}, that is, at t = tn+1/2 or θ = 1/2.

5. compute {k1, k2, k3, k4} of the fine grid by using ∆tF = ∆t/2 and the {U ′n+1/2, U
′′
n+1/2, U

′′′
n+1/2, fUU

′′
n+1/2}.

6. use in each sub-step of the second RK step its intermediate value

U (1) = Un+1/2 (129)

U (2) = Un+1/2 +
1

2
k1 (130)

U (3) = Un+1/2 +
1

2
k2 (131)

U (4) = Un+1/2 + k3 (132)

Un+1/2 = Un+1/2 +
1

6
(k1 + 2k2 + 2k3 + k4) (133)

where Un+1/2 is computed again from the dense output interpolator. The second RK step finalizes at tn+1.

22

2. RK4 with ratio R

Let us be more explicit and write down the steps for the standard fourth order RK for an arbitrary ratio R. First
we define the time-step on the fine grid ∆tF = ∆t/R. Then we start a loop over the steps on the fine grid, going from
r = 0, R− 1

1. define tn+r/R ≡ t+ r∆tF and evaluate the solution Un+r/R(t = tn+r/R) by using the dense output interpolator.

2. Computing {U ′n+r/R, U
′′
n+r/R, U

′′′
n+r/R, fUU

′′
n+r/R} from the dense output interpolator as a function of

{k1, k2, k3, k4}, that is, at t = tn+r/R or θ = r/R. The Jacobian can be obtained directly from the ki of
the coarser grid by computing fUU

′′
n+r/R = 4(k3 − k2)/∆t3.

3. compute {k1, k2, k3, k4} of the fine grid by using its time-step ∆tF , namely

k1 = ∆tF U
′
n+r/R (134)

k2 = ∆tF U
′
n+r/R +

1

2
∆t2F U

′′
n+r/R +

1

8
∆t3F

[
U ′′′n+r/R − fUU

′′
n+r/R

]
(135)

k3 = ∆tF U
′
n+r/R +

1

2
∆t2F U

′′
n+r/R +

1

8
∆t3F

[
U ′′′n+r/R + fUU

′′
n+r/R

]
(136)

k4 = ∆tF U
′
n+r/R + ∆t2F U

′′
n+r/R +

1

2
∆t3FU

′′′
n+r/R (137)

4. use in each sub-step of the first RK step its intermediate value, that for our RK4 is

U (1) = Un+r/R (138)

U (2) = Un+r/R +
1

2
k1 (139)

U (3) = Un+r/R +
1

2
k2 (140)

U (4) = Un+r/R + k3 (141)

Un+ r+1
R = Un+r/R +

1

6
(k1 + 2k2 + 2k3 + k4) (142)

The final RK step finalizes at tn+1.

3. RK3 with ratio 2

The procedure for the RK-SS(3, 3) is very similar, but simpler since there is one stage less:

1. we start the fist RK step of the fine grid by computing {U ′n, U ′′n} from the dense output interpolator as a function
of {k1, k2, k3}, that is, at t = tn or θ = 0.

2. compute {k1, k2, k3} of the fine grid by using ∆tF = ∆t/2. For this RK-SSP(3, 3)

k1 = ∆tF U
′
n (143)

k2 = ∆tF U
′
n + ∆t2F U

′′
n +O(∆t3F) (144)

k3 = ∆tF U
′
n +

1

2
∆t2F U

′′
n +O(∆t3F) (145)

3. use in each sub-step of the first RK step its intermediate value, that for our RK3-SSP is

U (1) = Un (146)

U (2) = Un + k1 (147)

U (3) = Un +
1

4
k2 +

1

4
k3 (148)

Un+1/2 = Un +
1

6
(k1 + 2k2 + 4k3) (149)

23

4. we start the second RK step of the fine grid by computing {U ′n+1/2, U
′′
n+1/2} from the dense output interpolator

as a function of {k1, k2, k3}, that is, at t = tn+1/2 or θ = 1/2.

5. compute {k1, k2, k3} of the fine grid by using ∆tF = ∆t/2 and the {U ′n+1/2, U
′′
n+1/2, U

′′′
n+1/2}.

6. use in each sub-step of the second RK step its intermediate value

U (1) = Un+1/2 (150)

U (2) = Un+1/2 + k1 (151)

U (3) = Un+1/2 +
1

4
k2 +

1

4
k3 (152)

Un+1 = Un+1/2 +
1

6
(k1 + 2k2 + 4k3) (153)

where Un+1/2 is computed again from the dense output interpolator. The second RK step finalizes at tn+1.

D. AMR in particles

The previous subsections refer to AMR for mesh based simulations. The challenges of running multi-resolution
particle simulations are faced using the Multi Level Multi Domain approach (MLMD from now on) [11].

The MLMD architecture is composed of a collection of different domains each simulated with the full physical
description and interlocked to the others through the exchange of particle information. Particles are created at
initialization in each level of the grid they belong to and are bounded to their level of origin, not being allowed to
transition from coarser to refined grids and vice versa. Refined particles are lost when they exit their domain of
origin and new refined level particles are created from the coarse grid particle distribution at the boundary cells of
the refined grids.

The algorithm of particle splitting creates a collection of particles (in a factor of a ratio parameter) displaced in
space, keeping the same physical fields as parent particle pp but volume. Volume of children particles cp is evenly
distributed all over the new set of created particles.

Vpp =
∏
cp

Vcp (154)

More detail and properties of this method are explained in detail in [12] (Algorithm S1).
An interesting characteristic of MLMD systems is that interaction between coarse and fine levels only occurs at fine

boundary zone. Coarser particles creates new finer particles at that areas enforcing continuity, however, those finer
particles (so as coarser particles) are free to evolve. Consequently, a different evolution across the levels is possible in
the overlap areas simulated by different levels.

The possibility of obtaining different evolution across the levels, within the limits of boundary continuity, is consid-
ered a point of strength in MLMD, since it shows the capability of refined levels to evolve according to dynamics not
accessible, because of the reduced resolution, to the coarser levels. This characteristic is one of the major differences
from AMR systems, while AMR aims at consistency in the overlap area across the levels, MLMD only enforces particle
continuity at grid interfaces and aims an efficient interlocking between the levels in the overlap areas.

VII. BOUNDARY CONDITIONS

Simflowny handles the boundary condition by extrapolating to get ghost points and being able to take derivatives.

A. Boundary conditions

The main part of the boundary conditions assumes that there is an outgoing radial wave with some speed v0,

X = X0 +
u(r − v0t)

r
(155)

24

where X is any of the tensor components of the evolved variables, X0 its value at infinity and u a spherically symmetric
perturbation. Notice that {X0, v0} depend on the particular variable. The time derivative can be written as

∂tX = −vi∂iX − v0
X −X0

r
(156)

where vi = v0x
i/r and ∂i are evaluated using centered finite differencing where possible and one-sided finite differencing

elsewhere. We can also account for the non-wave art of the solutions by assuming that these parts decay with a certain
power p of the radius. Given a source term (∂tX), the corrected term (∂tX)∗ can be computed as

(∂tX)∗ = ∂tX +

(
r

r − ni∂ir

)p
ni∂i(∂tX) (157)

where ni is the normal vector of the corresponding boundary face and we assume a second order decay p = 2. This
new correction can be written explicitly, namely

∂tX = −v0
xi

r
∂iX − v0

X −X0

r
− λBCv2

0

(
r

r − 1

)p(
xixj

r2
∂i∂jX +

xi

r2
∂iX −

X

r2

)
(158)

VIII. TESTS AND SIMPLE APPLICATIONS

We will focus on two specific models. First, we will perform some tests with the scalar wave equation to check the
accuracy and convergence of our numerical schemes, in combination with the Adaptive Mesh Refinement algorithms.
Then we will use to Einstein Equations to study some simple problems like gravitational wave radiation of a single
black hole and binary solitonic boson stars.

A. Wave equation

We will focus here in the simple wave equation written as a system first order in time and second order in space,
namely

∂tφ = −Π (159)

∂tΠ = −ηij∂i∂jφ (160)

where ηij = 1 for i = j and zero otherwise. Our set up consists on a 1D channel with a domain [−2, 8] and periodic
boundary conditions. Our initial configuration is given by a time-symmetric pulse centered at x = 0 , namely

phi0(x) = φ(x, t = 0) = e−x
2/%2 , Π = 0 . (161)

with % = 0.173. Within this initial condition, the initial gaussian profile splits in two identical pulses propagating in
opposite directions. These two pulses overlaps at the initial location after a full crossing time t = 10.

We evolve this problem with fourth order space differencing and sixth order Kreiss-Oliger dissipation, such that the
semi-discrete problem is consistent to the continuum one to fourth accuracy in ∆x. We will use two different Runge-
Kutta (i.e., a 3rd order RK3 and 4th order RK4) to integrate the semi-discrete ODE, such that the fully discrete
problem is accurate at third and fourth order in time respectively. In this unigrid setup it is straightforward to show
that our numerical solution converges to the analytical solution φ(x, t) = φ0(x − t)/2 + φ0(x + t)/2 to the expected
order (i.e., third order with RK3 and fourth order with RK4) when using the resolutions ∆x = {1/40, 1/80, 1/160}.

The problem becomes more interesting by including an additional fixed grid between [1, 2] with twice the resolution
of the coarse original grid. The pulse traveling to the right will cross the fine region and then interact with the one
traveling to the left before returning to its initial position. The pulse traveling to the left will also cross the the refined
region after the interaction. The solution at different times is displayed in Figure 12).

The convergence of the numerical scheme will depend now not only on the order of the space discretization and
time integrator, but also on the choice of time refinement algorithm. We have considered here several choices here;
no sub-cycling, Tappering, Berger-Oliger (BO) with an internal dense output third order interpolator Berger-Oliger
without order reduction (BOR). Additionally, we have considered the case with a single transition point between the
coarse and the fine grid, which is evolved by interpolating both evolution methods at the boundary point: evolution
of the fine grid and evolution of ghost zone points. In Figure 13 we show the convergence rate obtained for the RK4
and RK3.

25

FIG. 12: Scalar wave evolution for half a crossing time. Notice that the pulse traveling to the right crosses the refined region
(in grey) in the first half crossing time, while that the one traveling to the left will do it during the second half.

FIG. 13: Convergence order of RK4 (top panels) and RK3 (bottom panels) with transition zone (left) and without (right)
by using ∆x = {1/40, 1/80, 1/160}. Only the Tappering and the Berger-Oliger with no order reduction (BOR) achieves the
expected fourth order convergence achieved without sub-cycling in time. The convergence is degraded when the original Berger-
Oliger (BO) is used, even if it is third order. The BO convergence improves when using a transition zone of a single point
between the coarse and the fine grid.

As it was expected, only the Tappering and the Berger-Oliger without order reduction achieves the expected
convergence rate, while that the original Berger-Oliger reach a much lower convergence rate. Notice however that
using the transition zone improves somehow the convergence order of the Berger-Oliger schemes.

In addition to the convergence rate we can also calculate the reflections produced by the change of grid size when
the pulse traveling to the right crosses the refined grid. We will restrict to the RK4 here, and will measure these
reflections as the integral in the interval [−1, 0] of the norm of the scalar field. In figure 14 the reflections are displayed
as a function of time, as it crosses the refined region and produces two reflected waves (i.e., one at the enter and one
at the exit).

We can now study the convergence of our algorithm with fully AMR, by setting a refinement criterium such that

26

FIG. 14: Reflections produced by the pulse traveling to the right as it enters and exits the refined region for ∆x =
{1/40, 1/80, 1/160} in the coarse grid.The RK4 without and with transition zone have been considered here. Notice that
the presence of the transition point reduces the reflections for all the AMR algorithms.

the refined grid follows the pulses (i.e., the grid is refined whenever φ ≥ 10−6). The convergence with RK4, for the
different AMR algorithms, is shown in Figure 15.

27

FIG. 15: AMR convergence. TODO: repeat the convergence calculation with N = 3200 points as a higher resolution

B. Newtonian ideal MHD equations

The ideal MHD equations, describing a magnetized perfect fluids, can be written in terms of the total energy E
and the momentum density Si

E =
1

2
ρv2 + ρε+

B2

2
, Si = ρvi (162)

where ρ is the fluid density, ε its internal energy, vi its velocity and Bi the magnetic field. Within these definitions,
the complete set of evolution equations can be written as

∂tρ + ∂k[ρvk] = 0 (163)

∂tE + ∂k[(E + p+
B2

2
)vk − (vjB

j)Bk] = 0 (164)

∂tSi + ∂k[ρvkvi + δki (p+
B2

2
)−BkBi] = 0 (165)

∂tB
i + ∂k[vkBi − viBk + δkiψ] = 0 (166)

∂tψ + c2h∂iB
i = −κψψ (167)

where ψ is a scalar introduced to enforce dynamically the solenoid constraint ∇iBi. This divergence cleaning approach
allows to propagate the constraint violations with a speed ch and damp them exponentially in a timescale 1/κ.

In order to close this system of equations one needs to provide an additional equation relating the pressure to the
other fluid variables p = p(ρ, ε) (i.e., an Equation of State (EoS)). A common choice, that we will follow here, is
to consider the ideal gas EoS p = (Γ − 1)ρε. Within this choice, all the fluid variables can be recovered through
algebraical relations from the evolved fields.

1. Circularly polarized Alfven wave

Our first benchmark test of the numerical scheme for fluids is the 2D circularly polarized Alfven wave problem [13],
which is the advection of a smooth solution of the ideal compressible MHD equation in a periodic 2D box in the
x, y-plane. The initial conditions are set as follows:

ρ = 1 (168)

p = 0.1 (169)

B‖ = 1 (170)

B⊥ = v⊥ = 0.1 sin(2πx‖) (171)

Bz = vz = 0.1 cos(2πx‖) (172)

x‖ = (x cosαk + y sinαk) (173)

28

where αk is the angle between the wavevector k and the x direction, which is related to the ratio of the domain lengths,
tanαk = Ly/Lx. The subscripts ‖ and ⊥ refer to the components parallel and perpendicular to k, respectively; the
perpendicular component of the magnetic field is related to the Bx, By components by B⊥ = By cosαk − Bx sinαk.
Such setup admits an analytical, stationary solution, consisting in the advection of the magnetic field along the domain
diagonal, with a period tcycle = Lx/ cosαk.

We use the ideal EoS with Γ = 5/3, domain size Lx = Ly = 2, corresponding to α = π/4, tcycle = 2
√

2. We
first perform tests with a single mesh of N2 points, with five resolutions N = 16, 32, 64, 128, 256. First we explore
different reconstruction methods without any mesh refinement, with a LLF flux formula and the 4th order Runge-
Kutta schema for the time integration with a time-step ∆t = kcfl∆x/

√
2 where kcfl < 1 is the Courant factor. We set

a conservative value kcfl = 0.25, which is low enough to ensure that the discretization errors are dominated by the
spatial terms. We evolve the solutions up to t = 10 (about 3.5 cycles) and then verify the absolute error compared
to the analytical solution, as well as the convergence rate of the different methods. For each simulation, we calculate
the error by integrating over the entire dominion the L1-norm of the relative difference of the values of Bx between
the numerical solution after exactly 3 cycles and the initial analytical data. We checked that the errors calculated
over other magnetic field components behave in the same way. We check that, for each method and resolution, the
accumulated calculated errors grow linearly with the number of cycles.

FIG. 16: Relative errors for different methods and resolutions (coloured lines), measured as the L1-norm of the difference
between the numerical and the analytical solution of Bx after 3 cycles (t = 6

√
2), as a function of number of points (top) and

CPU time (bottom). Clearly, the fifth-order schemes achieve a smaller error for a given number of points with less CPU time.
The slopes of the three black dotted lines represent, from above to below, the nominal 2nd, 3rd and 5th convergence orders.

The relative errors of the solution after exactly 3 cycles, are shown in Fig. 16. One can clearly see that all methods,
with the exception of FDOC5 (see middle panel of Fig. 18), behave as their nominal convergence predict (Fig. 17):
WENO5-JS, WENO5-Z and MP5 show the same convergence fifth order, WENO3, FDOC3 and FDOC5 converge
at third order and PPM converge only at second order. The relative errors for different resolutions allow us to note
that, among the 5th order methods, WENO5-Z shows a slight improvement in accuracy, compared to WENO5JS and
MP5. Note that for N ≥ 256, the calculation of error is inaccurate because of the limited number of digits. Actually,
any small difference (like the last digit of an input value) brings to a visible apparent deviation from the accuracy
order, but this effect vanishes as soon as the solution accumulates higher errors.

We also check different values of ε for the MP5 and WENO5 methods, with some cases shown in Fig. 18 (left panel).
For this specific smooth problem, we found no differences for a range of values of ε in WENOs methods (see a few
undistinguishable cases in the figure), while, for MP5 high resolution runs, the values of ε . 10−6 brings to a higher
error than for ε ≥ 10−6. Note also that MP5 is known to be less robust. Hereafter, we set the nominally optimal
values ε = δx2 for WENO3, α = 4 and ε = 10−6 for MP5, and ε = δx4 for WENO5-JS and WENO5-Z.

Besides the accuracy measured by the relative errors as a function of N , we are also interested on the computational
cost. The CPU time [16] required to achieve a given accuracy for the different methods is shown at the bottom panel
of Figure 16. Note that with the lowest resolution (N = 16), the CPU time is dominated by the initial data setup, thus
it is less dependent on method. We have verified that, for our code and setup, the CPU time here shown stochastically
vary by about 5% − 20% depending on the case. Our results indicate that, among the lower order methods, for a
given accuracy FDOC5 is the fastest. The high-order methods are comparable in speed.

29

FIG. 17: Convergence order calculated with the relative L1-errors of Bx after 3 cycles, for N = 32, 64, 128. Here we show the
unigrid case, but the FMR behaves in the same way.

FIG. 18: Relative L1-errors of Bx after 3 cycles for other choices of ε (left, function of N), and including FDOC5 (middle,
function of N , and right, function of CPU time).

We run the same battery of tests for refined meshes, considering two cases:
• FMR1x4: a refined mesh with refinement factor 4 and boundaries [0.5, 1.5]× [0.5, 1.5]
• FMR2x2: two refined meshes, with relative refinement factor 2: the first with boundaries [0.45, 1.55]× [0.45, 1.55],
the second [0.5, 1.5]× [0.5, 1.5]. This case is shown in Fig. 19.

We checked that, for the tested schemas, the convergence order is maintained, and the errors are slightly reduced, as
shown in Fig. 20 for WENO3 and WENO5Z. Note that, in a realistic case, this choice of FMR is not computationally

30

FIG. 19: 2D CP Alfven waves in the FMR2x2 case: Bz component and refined meshes.

FIG. 20: 2D CP Alfven waves errors: comparison of relative L1-errors of Bx without/with FMR for WENO3 and WENO5Z, as
a function of N (left) and CPU time (right). The slopes of the black dotted lines represent, from above to below, the nominal
2nd and 3rd convergence orders.

convenient (see right panel of Fig. 20), because the solution is propagating in and out from the refined region. This
implies that the error, calculated on the main mesh, is dominated by the non-refined region. However, this test is
useful to prove that the convergence order is maintained for all the tested methods and no numerical artifacts appear,
thus confirming the results found for the scalar wave, but for a more challenging model, even though consisting in a
smooth solution.

2. Magnetic shock tube

We further test our code capabilities to capture shocks through a non-smooth MHD problem: the Brio and Wu 1D
magnetic shock tube [14], which is the MHD extension of the classical SOD shock tube. The left state (0 ≤ x < 0.5)
is given by ρ = 1, p = 1, By = 1, the right state (0.5 ≤ x ≤ 1) is given by ρ = 1, p = 1, By = 1. Everywhere, v = 0,
Bx = 0.75 and γ = 2. Note that this magnetic version of the shock tube is more challenging, especially with such
relatively high values of Bx, By.

We test the evolved profiles for PPM, WENO3, WENO5Z, MP5 with N = 50, 100, 200, 400.[17] We use a timestep

31

dt = kcfldx, with kcfl = 0.2. We compare the results with the exact solution (solid line, “HR”), evaluated by running
the same problem with N = 4000, with PPM. We find results quantitatively consistent with tested codes [15].

Hereafter we analyze the results for t = 0.2. In Figs. 21, 22 we show the profiles of ρ (top left sub panels),
By (top right sub-panels), vx (bottom left sub-panels), p (bottom right sub-panels), with different methods for
N = 50, 100, 200, 400 from top to bottom, respectively. As expected, the convergence order is around one, due to
the presence of shocks. Note that PPM, as it is well known, is able to attain a satisfactory accuracy for non-smooth
solutions, similar to the highest order method, WENO5Z, and much better than WENO3. The velocity component
vx is the hardest to be reproduced, with oscillations shown even for N = 400 in all methods.

FIG. 21: Brio & Wu shock tube test in unigrid at t = 0.2 for N = 50, 100 (from top to bottom, respectively): profiles of ρ (top
left sub panels), By (top right sub-panels), vx (bottom left sub-panels), p (bottom right sub-panels), with different methods.
The exact solution (solid line, “HR”), has been evaluated by running the same problem with N = 4000, with PPM.

We repeat the same test for WENO3 and WENO5Z by with a FMR, considering two cases:
• FMR1x4: a refined mesh with refinement factor 4 and boundaries [0.4, 0.6] (dark grey in figures)
• FMR2x2: two refined meshes, with relative refinement factor 2: the first with boundaries [0.34, 0.66] (light grey
band in figures), the second at [0.4, 0.6]. These regions are soon crossed by both the rarefaction wave propagating to
the left, and the shock front propagating to the right.

In Fig. 23 we show the same profiles as before, for N = 400, with and without FMR, for WENO3 (top), WENO5Z
(middle), MP5 (bottom). We show the details of the profiles for WENO3 (Fig. 25), WENO5Z (Fig. 26), at different

32

FIG. 22: Same as Fig. 21, for N = 200, 400.

resolutions.
Such choice allows us to evaluate the gain in accuracy. In Fig. ?? and Fig. ?? we show the comparison of L1-errors

of ρ, By, vx as a function of time (with N = 400) and number of points (at t = 0.2), respectively. We note that the
convergence norm considering the errors for N = 100, 200, 400 (see Fig. ??) oscillates a lot, both in time and with
different resolutions. Keeping this in mind, the most accurate methods are PPM, WENO5Z and MP5. WENO5Z
shows more oscillations in vx and By but on average it adheres to the exact solution as well as MP5 and PPM.
WENO3 is the worst one in terms of accuracy.

C. Gresho-Chan Vortex

The Gresho-Chan Vortex problem has been implemented using a particle-based simulation.
This test sets a 2D stationary vortex that should be in stable equilibrium. Since centrifugal forces and pressure

gradients balance exactly, any deviation from the initial configuration that develops over time is spurious and of purely
numerical origin. The azimuthal component of the velocity in this test rises linearly up to a maximum value of v0

which is reached at r = R1 and subsequently decreases linearly back to zero at 2R1

33

FIG. 23: Brio & Wu shock tube test for N = 400 at t = 0.2, for FDOC3, WENO3 (top to bottom): profiles of ρ (top left
sub panels), By (top right sub-panels), vx (bottom left sub-panels), p (bottom right sub-panels) with and without FMR (see
legends).

vφ(r) = v0

u u ≤ 1

2− u 1 < u ≤ 2

0 u > 2

(174)

34

P (r) = P0

1
2v

2
0u

2 u ≤ 1

4v2
0(u

2

8 − u+ lnu+ 1) 1 < u ≤ 2

4v2
0(ln 2− 1

2) u > 2

(175)

We are using v0 = 1, together with R1 = 0.2, and a polytropic exponent of 5
3 . Four different resolutions has been

run: 40, 80, 160, and 320. Those numbers refers to the number of particles by axis. Figure 27 shows the profiles over
R for the different resolutions. The solid lines correspond to the particle averages of |v|, while the dots correspond to
the real particles velocities. Increasing the solution, the ideal triangular profile is reach.

Figure 28 shows the average errors over time. It can be seen that the error clearly diminishes when resolution is
high.

D. Particle-Mesh Interaction Test

In order to test integration and interaction between mesh and particle systems an adaptation of the Advection
Equation has been implemented as follows:

∂tΨ = −(1− µ)∂kΨ− µ∂kΦ (176)

DtΦ− vk∂kΦ = −(1− η)∂kΦ− η∂kΨ (177)

where Φ is a particle field and Ψ is a mesh field.
This way, using appropriate values for µ and η, interaction between mesh and particle RHS can be tested. A value

of 0 means that current field is calculated without the influence of the other field, while the value of 1 indicates
complete influence from the other field and no influence from current field. Middle values balances influence of both
fields.

The initial data consists on a gaussian profile:

Φ,Ψ = 0.5e(− (x−1)2+(y−1)2

0.1) (178)

in a periodic domain of [0, 2]2.
There must be said that the numerical method used to solve mesh field equation is order 4, while particle method

is order 2. Figure 30 shows a first convergence test performed to check the correct implementation of those numerical
methods.

Then, three resolutions have been tested in order to calculate convergence, 25, 50, and 100 for both cells and
particles. Figure 29 shows four differente selection for µ and η parameters. It is remarkable that the mesh reduces its
order of convergence to 2 when field particle influences on mesh equation. Furthermore, particle gets the convergence
order of mesh when its equation gets all the influence of mesh field and none of its own field.

Additional tests have been performed to test particle velocity and its effects on convergence. The tests use an average
from particle fields into the underlying mesh (50, 100 and 200 particles in 25, 50 and 100 meshes respectively). The
average uses the same kernel calculation that particle method uses.

Three particle velocities are tested: v = 0.0, v = 0.5, v = 1.0 Figures 30, 31, and 32 respectively. Convergence of
particles and mesh keep their respective values.

The following graphic 33 represents the error of middle resolution:

E. The Integration

An integrator for Simflowny variables is available. There are currently two options, Integral and L2-Norm. Their
formulas are as follows in 2D (easily to get 3D ones):

dx ∗ dy ∗ u(i, j) + u(i+ 1, j) + u(i, j + 1) + u(i+ 1, j + 1)

4
(179)

35

dx ∗ dy ∗ (
u(i, j) + u(i+ 1, j) + u(i, j + 1) + u(i+ 1, j + 1)

4
)2 (180)

[1] J. C. Butcher, Numerical Methods for Ordinary Differential Equations (John Wiley and Sons, Ltd, 2008), ISBN
9780470753767, URL http://dx.doi.org/10.1002/9780470753767.fmatter.

[2] L. Pareschi and G. Russo, J. Sci. Comput. 25, 112 (2005).
[3] G. Calabrese, L. Lehner, O. Reula, O. Sarbach, and M. Tiglio, Classical and Quantum Gravity 21, 5735 (2004), gr-

qc/0308007.
[4] P. Colella and P. R. Woodward, Journal of Computational Physics 54, 174 (1984).
[5] A. Suresh and H. Huynh, Journal of Computational Physics 136, 83 (1997), ISSN 0021-9991, URL http://www.

sciencedirect.com/science/article/pii/S0021999197957454.
[6] C. Bona, C. Bona-Casas, and J. Terradas, Journal of Computational Physics 228, 2266 (2009), 0810.2185.
[7] G.-S. Jiang and C.-W. Shu, Journal of Computational Physics 126, 202 (1996), ISSN 0021-9991, URL http://www.

sciencedirect.com/science/article/pii/S0021999196901308.
[8] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws

(Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), pp. 325–432, ISBN 978-3-540-49804-9, URL https://doi.org/10.

1007/BFb0096355.
[9] D. S. Balsara, Living Reviews in Computational Astrophysics 3, 2 (2017), 1703.01241.

[10] flux decomposition formulas. (2017), URL https://wjrider.wordpress.com/2017/10/06/

thinking-about-flux-splitting-for-general-riemann-solvers/.
[11] M. Innocenti, G. Lapenta, S. Markidis, A. Beck, and A. Vapirev, Journal of Computational Physics 238, 115 (2013),

ISSN 0021-9991, URL http://www.sciencedirect.com/science/article/pii/S0021999112007590.
[12] G. Lapenta, Journal of Computational Physics 181, 317 (2002), ISSN 0021-9991, URL http://www.sciencedirect.com/

science/article/pii/S0021999102971263.
[13] G. Tóth, Journal of Computational Physics 161, 605 (2000).
[14] M. Brio and C. C. Wu, Journal of Computational Physics 75, 400 (1988).
[15] L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo, Astronomy and Astrophysics 473, 11 (2007), 0704.3206.
[16] these tests are performed in a single processor, on a desktop DELL XPS computer, Processor Intel Core i7-7700 CPU, 3.60

GHz
[17] Due to the need of running a 2D simulation in Simflowny, we set in the vertical direction a number N/10 of points.

36

FIG. 24: Brio & Wu shock tube test for N = 400 at t = 0.2, for WENO5Z, MP5 (top to bottom): profiles of ρ (top left
sub panels), By (top right sub-panels), vx (bottom left sub-panels), p (bottom right sub-panels) with and without FMR (see
legends).

37

FIG. 25: Brio & Wu shock tube test with WENO3, t = 0.2: profiles of ρ (top left sub panels), By (top right sub-panels), vx
(bottom left sub-panels), p (bottom right sub-panels) for different resolutions, in unigrid (top), FMR1x4 (middle), and FMR2x2
(bottom).

38

FIG. 26: The same as Fig. 25 but for WENO5Z

39

FIG. 27: Different resolution |v| at time 1. 40, 80, 160, 320

FIG. 28: Different resolution error. 40, 80, 160, 320

40

FIG. 29: Convergence. From left to right and top to bottom; µ = 0.5 η = 0.5, µ = 0 η = 1, µ = 1 η = 0, µ = 1 η = 1

FIG. 30: Convergence. v = 0

41

FIG. 31: Convergence. v = 0.5

FIG. 32: Convergence. v = 1

FIG. 33: Simulation error. Error in central position of gaussian profile (every t = 2)

